forked from alelab-upenn/graph-scattering-transforms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGSTsmallWorld.py
621 lines (529 loc) · 27.2 KB
/
GSTsmallWorld.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
# 2019/05/20~23
# Fernando Gama, [email protected]
# Graph scattering transform.
# Compute the representation difference on a small world graph.
# Representations considered:
# GFT: unstable graph-dependent representation
# Diffusion scattering: comparison with other works
# Monic cubic polynomial wavelet: Hammond et al wavelets
# Tight Hann wavelets: Shuman et al wavelets
# Theoretical bound obtained also shown in the graphs.
# The idea is just to show how the representation difference changes with
# perturbations of different size, and show that the representation difference
# in stable GST is (way) smaller than in the (unstable) GFT.
#%%##################################################################
# #
# IMPORTING #
# #
#####################################################################
#\\\ Standard libraries:
import os
import numpy as np
import matplotlib
matplotlib.rcParams['text.usetex'] = True
matplotlib.rcParams['font.family'] = 'serif'
import matplotlib.pyplot as plt
import pickle
import datetime
#\\\ Own libraries:
import Modules.graphScattering as GST
import Utils.graphTools as graphTools
#\\\ Own separate functions:
from Utils.miscTools import writeVarValues
from Utils.miscTools import saveSeed
#%%##################################################################
# #
# SETTING PARAMETERS #
# #
#####################################################################
thisFilename = 'GSTsmallWorld' # This is the general name of all related files
saveDirRoot = 'experiments' # In this case, relative location where to save
# anything that might need to be saved out of the run
saveDir = os.path.join(saveDirRoot, thisFilename) # Dir where to save all the
# results from each run
#\\\ Create .txt to store the values of the parameters of the setting for easier
# reference when running multiple experiments
today = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
# Append date and time of the run to the directory, to avoid several runs of
# overwritting each other.
saveDir = saveDir + today
# Create directory
if not os.path.exists(saveDir):
os.makedirs(saveDir)
# Create the file where all the (hyper)parameters are results will be saved.
varsFile = os.path.join(saveDir,'hyperparameters.txt')
with open(varsFile, 'w+') as file:
file.write('%s\n\n' % datetime.datetime.now().strftime("%Y/%m/%d %H:%M:%S"))
#\\\ Save seeds for reproducibility
# Numpy seeds
numpyState = np.random.RandomState().get_state()
# Collect all random states
randomStates = []
randomStates.append({})
randomStates[0]['module'] = 'numpy'
randomStates[0]['state'] = numpyState
# This list and dictionary follows the format to then be loaded, if needed,
# by calling the loadSeed function in Utils.miscTools
saveSeed(randomStates, saveDir)
########
# DATA #
########
nNodes = 100 # Number of nodes
graphType = 'SmallWorld' # Type of graph
graphOptions = {} # Dictionary of options to pass to the createGraph function
if graphType == 'SBM':
graphOptions['nCommunities'] = 5 # Number of communities
graphOptions['probIntra'] = 0.8 # Intracommunity probability
graphOptions['probInter'] = 0.2 # Intercommunity probability
elif graphType == 'SmallWorld':
graphOptions['probEdge'] = 0.5 # Edge probability
graphOptions['probRewiring'] = 0.1 # Probability of rewiring
nTest = 1000 # Number of testing samples
nSimPoints = 10 # Number of simulation points (x-axis)
signalPower = 1. # Base variance of (random samples)
perturbationEpsilon = signalPower * np.arange(1, nSimPoints+1)/float(nSimPoints)
# Value epsilon of the perturbation, it is relative to the signal power
# and it goes from 1/nSimPoints to 1
nPerturbationRealizations = 10 # Number of realizations of the perturbation
# Each perturbation is random, so how many different perturbations we want
# to run before we average the results
nGraphRealizations = 10 # Number of graph realizations
# Each graph is random, so how many graphs to create to average the results
# The randomization of the graphs is the one that is plotted as error bars
# (i.e. how much the performance changes with different graphs within
# the same family)
#\\\ Save values:
writeVarValues(varsFile, {'nNodes': nNodes, 'graphType': graphType})
writeVarValues(varsFile, graphOptions)
writeVarValues(varsFile, {'nTest': nTest,
'nSimPoints': nSimPoints,
'signalPower': signalPower,
'nPerturbationRealizations':nPerturbationRealizations,
'nGraphRealizations': nGraphRealizations})
#################
# ARCHITECTURES #
#################
# Select which wavelets to use
doDiffusion = True # F. Gama, A. Ribeiro, and J. Bruna, "Diffusion scattering
# transforms on graphs,” in Int. Conf. Learning Representations 2019.
# New Orleans, LA: Assoc. Comput. Linguistics, 6-9 May 2019.
doMonicCubic = True # Eq. (65) in D. K. Hammond, P. Vandergheynst, and
# R. Gribonval, "Wavelets on graphs via spectral graph theory," Appl.
# Comput. Harmonic Anal., vol. 30, no. 2, pp. 129–150, March 2011.
doTightHann = True # Example 2, p. 4226 in D. I. Shuman, C. Wiesmeyr,
# N. Holighaus, and P. Vandergheynst, "Spectrum-adapted tight graph wavelet
# and vertex-frequency frames,” IEEE Trans. Signal Process., vol. 63,
# no. 16, pp. 4223–4235, Aug. 2015.
doGFT = True # Compare against the GFT which is a (unstable) representation that
# also depends on the graph
normalizeGSOforGFT = True # The GSO for the GFT is the Laplacian (if possible),
# if not, it becomes the adjacency matrix. In either case, setting True
# to this flag, gets the GSO normalized. Since we're usually comparing
# against normalized matrix descriptions in the other cases, we give this
# options.
computeBound = True # Compute the theoretical bound and show it (dashed) in the
# final figure (the bound computed is for the monic cubic polynomial
# wavelets due to easier closed-form expression that allows for
# straightforward computation of the derivatives)
numScales = 6 # Number of scales J (the first element might be the "low-pass"
# wavelet) so we would get J-1 "wavelet scales" and 1 (the first one, j=0)
# "low-pass" wavelet
numLayers = 3 # Number of layers L (0, ..., L-1) with l=0 being just Ux
#\\\ Save values:
writeVarValues(varsFile, {'numScales': numScales, 'numLayers': numLayers})
modelList = [] # List to store the list of models chosen
# Obs.: These are the names that will appear in the legend of the figure
if doDiffusion:
diffusionName = 'Diffusion'
modelList.append(diffusionName)
if doMonicCubic:
monicCubicName = 'Monic Cubic'
modelList.append(monicCubicName)
if doTightHann:
tightHannName = 'Tight Hann'
modelList.append(tightHannName)
if doGFT:
GFTname = 'GFT'
if computeBound:
boundName = 'Bound'
###########
# LOGGING #
###########
# Options:
doPrint = True # Decide whether to print stuff while running
doSaveVars = True # Save (pickle) useful variables
doFigs = True # Plot some figures (this only works if doSaveVars is True)
figSize = 5 # Overall size of the figure that contains the plot
lineWidth = 2 # Width of the plot lines
markerShape = 'o' # Shape of the markers
markerSize = 3 # Size of the markers
#\\\ Save values:
writeVarValues(varsFile,
{'doPrint': doPrint,
'doSaveVars': doSaveVars,
'doFigs': doFigs,
'figSize': figSize,
'lineWidth': lineWidth,
'markerShape': markerShape,
'markerSize': markerSize,
'saveDir': saveDir})
#%%##################################################################
# #
# SETUP #
# #
#####################################################################
#\\\ Save variables during evaluation.
reprError = {} # Representation error
# This is a dictionary where each key corresponds to one of the models,
# and each element in the dictionary is a list of lists storing the
# mean representation error (averaged across nTest) for each graph
# realization, for each perturbation value, and for each perturbation
# realization.
for thisModel in modelList: # First list is for each graph realization
reprError[thisModel] = [None] * nGraphRealizations
# The GFT representation error is on a different variable since it cannot be
# computed in the same for loop as the rest of the model (that would require
# creating a "scattering GFT" which makes no sense)
if doGFT:
reprErrorGFT = [None] * nGraphRealizations
# Store the values of the bound for each realization
if computeBound:
bound = [None] * nGraphRealizations
#%%##################################################################
# #
# GRAPH REALIZATION #
# #
#####################################################################
# Start generating a new graph for each of the number of graph realizations that
# we previously specified.
for graph in range(nGraphRealizations):
if doPrint:
print("Graph realization no. %d" % (graph+1))
# The reprError variable, for each model, has a list with a total number of
# elements equal to the number of graphs we will generate
# Now, for each graph, we have multiple perturbation values (epsilon values)
# so we want, for each graph, to create a list to hold each of those values
for thisModel in modelList:
reprError[thisModel][graph] = [None] * len(perturbationEpsilon)
# Repeat for the GFT error
if doGFT:
reprErrorGFT[graph] = [None] * len(perturbationEpsilon)
# The bound also depends on the specific value of epsilon so we also need
# this
if computeBound:
bound[graph] = [None] * len(perturbationEpsilon)
#%%##################################################################
# #
# GRAPH CREATION #
# #
#####################################################################
# Create graph
G = graphTools.Graph(graphType, nNodes, graphOptions)
#%%##################################################################
# #
# GRAPH SCATTERING MODELS #
# #
#####################################################################
modelsGST = {} # Store each model as a key in this dictionary, then we can
# can compute the output for each model inside a for (iterating over
# the key), since all models have a computeTransform() method.
if doDiffusion:
modelsGST[diffusionName] = \
GST.DiffusionScattering(numScales, numLayers, G.W)
if doMonicCubic:
modelsGST[monicCubicName] = GST.MonicCubic(numScales, numLayers, G.W)
if doTightHann:
modelsGST[tightHannName] = GST.TightHann(numScales, numLayers, G.W)
# Note that monic cubic polynomials and tight Hann's wavelets have other
# parameters that are being set by default to the values in the respective
# papers.
# We want to determine which eigenbasis to use. We try to use the Laplacian
# since it's the same used in the wavelet cases, and seems to be the one
# holding more "interpretability". If the Laplacian doesn't exist (which
# could happen if the graph is directed or has negative edge weights), then
# we use the eigenbasis of the adjacency.
if doGFT:
if G.L is not None:
S = G.L
if normalizeGSOforGFT:
S = graphTools.normalizeLaplacian(S)
_, GFT = graphTools.computeGFT(S, order = 'increasing')
else:
S = G.W
if normalizeGSOforGFT:
S = graphTools.normalizeAdjacency(S)
_, GFT = graphTools.computeGFT(S, order = 'totalVariation')
GFT = GFT.conj().T
# The bound will only be computed for the monic cubic polynomials (easier
# closed-form expression), so we need to be sure that it is here to compute
# the bound.
if computeBound and doMonicCubic:
# B is the maximum value of the filter on each scale (vector of size J)
B = modelsGST[monicCubicName].getFilterBound()
# Pick the maximum filter bound
B = np.max(np.abs(B))
# C is the integral Lipschitz constant for each filter (vector of size J)
C = modelsGST[monicCubicName].getIntegralLipschitzConstant()
# Pick the maximum
C = np.max(np.abs(C)) # Get the maximum of each J
# We now have to compute xiBJL which we will do by definition (i.e. the
# sum), instead of the result. So we need to create the values of ell
l = np.arange(0, numLayers) # l = 0, ..., L-1
# And then compute the different sums (xiBJL is an array of shape 3,
# where each element corresponds to one of the xiBJL constants)
xiBJL = np.array(
[np.sum(((B ** 2) * numScales) ** l),
np.sum(l * (((B ** 2) * numScales)**l)),
np.sum((l**2) * (((B ** 2) * numScales)**l))]
)
# The maximum value of U to compute its bound
BU = np.max(np.abs(modelsGST[monicCubicName].U))
# So far, we have created the models and computed all the necessary
# quantities that depend on the unperturbed graph, now we have to start
# checking each value of epsilon, and creating a nPerturbationRealizations
# of random changes in the edges.
#%%##################################################################
# #
# PERTURBATION NOISE #
# #
#####################################################################
for itEpsilon in range(len(perturbationEpsilon)):
# For each value of epsilon, we generate nPerturbationRealizations, and
# for each of these realizations, we generate nTest white noise samples.
epsilon = perturbationEpsilon[itEpsilon] # value of epsilon
if doPrint:
print("\tPerturbation value %.4f (no. %d)"%(epsilon, (itEpsilon+1)))
# This is the third list: for each graph and each value of epsilon
# we run nPerturbationRealizations and we store the values of each one
# of those.
for thisModel in modelList:
reprError[thisModel][graph][itEpsilon] = \
[None] * nPerturbationRealizations
if doGFT:
reprErrorGFT[graph][itEpsilon] = [None] * nPerturbationRealizations
if computeBound:
bound[graph][itEpsilon] = [None] * nPerturbationRealizations
# For each random perturbation
for perturbation in range(nPerturbationRealizations):
# Perturbation matrix E such that ||E|| < epsilon/2 and
# ||E/m_N - I|| < epsilon
E = np.random.uniform(1-epsilon/2, 1+epsilon/2, nNodes) # ||E-I||<e
E = np.diag(-epsilon/(2*(1+epsilon)) * E) # biggest absolute number
# is 1+epsilon and we want this number to be less than epsilon/2
# so that a (1+epsilon) <= epsilon/2
# Compute What = W + E^H * W + W * E
What = G.W + E.conj().T.dot(G.W) + G.W.dot(E)
# We use this adjacency matrix as input to the methods which
# then compute the appropriate representation of the graph
# In the GFT case, we have to use this perturbed adjacency matrix
# to obtain the appropriate eigenbasis (Laplacian or not,
# normalized or not)
if doGFT:
if G.L is not None:
Shat = graphTools.adjacencyToLaplacian(What)
if normalizeGSOforGFT:
Shat = graphTools.normalizeLaplacian(Shat)
else:
Shat = What
if normalizeGSOforGFT:
Shat = graphTools.normalizeAdjacency(Shat)
# Now that we have the perturbed graph, we need to create the
# corresponding GST models
perturbedModelsGST = {}
if doDiffusion:
perturbedModelsGST[diffusionName] = \
GST.DiffusionScattering(numScales, numLayers, What)
if doMonicCubic:
perturbedModelsGST[monicCubicName] = \
GST.MonicCubic(numScales, numLayers, What)
if doTightHann:
perturbedModelsGST[tightHannName] = \
GST.TightHann(numScales, numLayers, What)
if doGFT:
if G.L is not None:
_, GFThat = graphTools.computeGFT(Shat, order='increasing')
else:
_, GFThat=graphTools.computeGFT(Shat,order='totalVariation')
GFThat = GFThat.conj().T
if computeBound and doMonicCubic:
# This is the difference between the low-pass operators U in the
# perturbed and the unperturbed models
epsilonU = np.linalg.norm(
modelsGST[monicCubicName].U \
- perturbedModelsGST[monicCubicName].U)
# Now that we have used each perturbation, we can create the data.
#%%##########################################################
# #
# DATA CREATION #
# #
#############################################################
x = np.sqrt(signalPower) * np.random.randn(nTest, 1, nNodes)
# Each row is a random graph signal (only 1 feature)
#%%##########################################################
# #
# SCATTERING TRANSFORM #
# #
#############################################################
for thisModel in modelList:
y = modelsGST[thisModel].computeTransform(x).squeeze(1)
# y = Phi(S,x)
yHat = perturbedModelsGST[thisModel].computeTransform(x)\
.squeeze(1)
# yHat = Phi(Shat,x)
# Compute the relative representation error:
# ||Phi(S,x) - Phi(Shat,x)|| / ||Phi(S,x)||
thisReprError = np.linalg.norm(y - yHat, axis = 1)\
/np.linalg.norm(y, axis = 1)
# Save the representation error (averaged across nTest)
reprError[thisModel][graph][itEpsilon][perturbation] \
= np.mean(thisReprError)
#%%##########################################################
# #
# GFT #
# #
#############################################################
if doGFT:
# Multiplication by the left because the information is located
# in row vectors
yGFT = (x @ GFT).squeeze(1)
yGFThat = (x @ GFThat).squeeze(1)
# Compute the relative representation error
thisReprErrorGFT = np.linalg.norm(yGFT - yGFThat, axis = 1)\
/np.linalg.norm(yGFT, axis = 1)
# Save the representation error
reprErrorGFT[graph][itEpsilon][perturbation] \
= np.mean(thisReprErrorGFT)
#%%##########################################################
# #
# BOUND #
# #
#############################################################
if computeBound and doMonicCubic:
# Compute the bound and save it. The expression is the one
# in the paper, in Theorem 1.
bound[graph][itEpsilon][perturbation] = np.sqrt(
(epsilonU ** 2) * xiBJL[0] + \
2 * epsilonU * BU * epsilon * C / B * xiBJL[1] + \
(BU ** 2) * (epsilon * C / B) ** 2 * xiBJL[2]
) * np.sqrt(signalPower)
#%%##################################################################
# #
# RESULTS (FIGURES) #
# #
#####################################################################
# Now that we have computed the representation error of all runs, we can obtain
# a final result (mean and standard deviation) and plot it
meanReprErrorPerGraph = {} # Average across all perturbation realizations
meanReprError = {} # Average across all graph realizations
stdDevReprError = {} # Standard deviation across all graph realizations
######################
# COMPUTE STATISTICS #
######################
# Compute for each model
for thisModel in modelList:
# Convert the lists into a matrix (3 dimensions):
# nGraphRealizations x len(perturbationEpsilon) x nPerturbationRealizations
reprError[thisModel] = np.array(reprError[thisModel])
# And compute again the mean across perturbation realizations
meanReprErrorPerGraph[thisModel] = np.mean(reprError[thisModel],
axis = 2)
# And this resulting two-dimensional matrix contains the errors per graph
# for each of the epsilon values.
meanReprError[thisModel] = np.mean(meanReprErrorPerGraph[thisModel],
axis = 0)
stdDevReprError[thisModel] = np.std(meanReprErrorPerGraph[thisModel],
axis = 0)
# Compute for GFT
if doGFT:
# Convert the lists into a matrix (3 dimensions):
# nGraphRealizations x len(perturbationEpsilon) x nPerturbationRealizations
reprErrorGFT = np.array(reprErrorGFT)
# And compute again the mean across perturbation realizations
meanReprErrorPerGraphGFT = np.mean(reprErrorGFT, axis = 2)
# And this resulting two-dimensional matrix contains the errors per graph
# for each of the epsilon values.
meanReprErrorGFT = np.mean(meanReprErrorPerGraphGFT, axis = 0)
stdDevReprErrorGFT = np.std(meanReprErrorPerGraphGFT, axis = 0)
if computeBound and doMonicCubic:
# Convert the lists into a matrix (3 dimensions):
# nGraphRealizations x len(perturbationEpsilon) x nPerturbationRealizations
bound = np.array(bound)
# And compute again the mean across perturbation realizations
meanBoundPerGraph = np.mean(bound, axis = 2)
# And this resulting two-dimensional matrix contains the errors per graph
# for each of the epsilon values.
meanBound = np.mean(meanBoundPerGraph, axis = 0)
stdDevBound = np.std(meanBoundPerGraph, axis = 0)
################
# SAVE RESULTS #
################
# If we're going to save the results (either figures or pickled variables) we
# need to create the directory where to save them
if doSaveVars or doFigs:
saveDirResults = os.path.join(saveDir,'results')
if not os.path.exists(saveDirResults):
os.makedirs(saveDirResults)
##################
# SAVE VARIABLES #
##################
if doSaveVars:
# Save all these results that we use to reconstruct the values
# Save these variables
varsDict = {}
varsDict['reprError'] = reprError
varsDict['meanReprErrorPerGraph'] = meanReprErrorPerGraph
varsDict['meanReprError'] = meanReprError
varsDict['stdDevReprError'] = stdDevReprError
if doGFT:
varsDict['reprErrorGFT'] = reprError
varsDict['meanReprErrorPerGraphGFT'] = meanReprErrorPerGraphGFT
varsDict['meanReprErrorGFT'] = meanReprErrorGFT
varsDict['stdDevReprErrorGFT'] = stdDevReprErrorGFT
if computeBound and doMonicCubic:
varsDict['bound'] = bound
varsDict['meanBoundPerGraph'] = meanBoundPerGraph
varsDict['meanBound'] = meanBound
varsDict['stdDevBound'] = stdDevBound
# Determine filename to save them into
varsFilename = 'representationError.pkl'
pathToFile = os.path.join(saveDirResults, varsFilename)
with open(pathToFile, 'wb') as varsFile:
pickle.dump(varsDict, varsFile)
#########
# PLOTS #
#########
if doFigs:
# Create figure handle
reprErrorFig = plt.figure(figsize = (1.61*figSize, 1*figSize))
# For each model, plot the results
for thisModel in modelList:
plt.errorbar(perturbationEpsilon, meanReprError[thisModel],
yerr = stdDevReprError[thisModel],
linewidth = lineWidth, marker = markerShape,
markersize = markerSize)
# If there's representation error of the GFT, plot it
if doGFT:
plt.errorbar(perturbationEpsilon, meanReprErrorGFT,
yerr = stdDevReprErrorGFT,
linewidth = lineWidth, marker = markerShape,
markersize = markerSize)
# If there's a bound, plot it
if computeBound and doMonicCubic:
plt.errorbar(perturbationEpsilon, meanBound,
yerr = stdDevBound,
linewidth = lineWidth, linestyle = '--',
marker = markerShape, markerSize = markerSize)
plt.yscale('log')
plt.ylabel(r'Representation Error: ' + \
r'$\| \Phi(\mathbf{S},\mathbf{x}) ' + \
r'- \Phi(\hat{\mathbf{S}},\mathbf{x})\| / ' + \
r'\| \Phi(\mathbf{S},\mathbf{x}) \|$')
plt.xlabel(r'$\varepsilon$')
# Add the names to the legends
if doGFT:
modelList.append(GFTname)
if computeBound and doMonicCubic:
modelList.append(boundName)
plt.legend(modelList)
reprErrorFig.savefig(os.path.join(saveDirResults, 'reprErrorFig.pdf'),
bbox_inches = 'tight')