-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
574 lines (506 loc) · 20.3 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
from shiny import App, ui, render, reactive
from datetime import datetime, timedelta
import polars as pl
import requests
import math
import json
import os
import hashlib
from ollama import Client as OllamaClient
from openai import AzureOpenAI
from anthropic import AnthropicBedrock
from shiny.types import ImgData
from htmltools import Tag
# Default date (2 years ago)
default_date = (datetime.now() - timedelta(days=365)).strftime("%Y-%m-%d")
# Azure OpenAI configuration
azure_client = AzureOpenAI(
api_key=os.getenv("AZURE_OPENAI_KEY"),
api_version="2023-05-15",
azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"),
)
bedrock_client = AnthropicBedrock(
aws_profile=os.getenv("AWS_PROFILE"),
# aws_secret_key=os.getenv("AWS_SECRET_KEY"),
# aws_access_key=os.getenv("AWS_ACCESS_KEY"),
# aws_region=os.getenv("AWS_REGION"),
# aws_account_id=os.getenv("AWS_ACCOUNT_ID"),
)
# Add this function to generate a color based on the label text
def get_label_color(label):
hash_object = hashlib.md5(label.encode())
hex_dig = hash_object.hexdigest()
return f"#{hex_dig[:6]}"
def truncate_text(text, max_length=100):
return text[:max_length] + "..." if len(text) > max_length else text
app_ui = ui.page_fluid(
ui.head_content(
ui.tags.script(
"""
$(document).on('click', '.clickable-row tbody tr', function() {
let issueNumber = $(this).find('td:first').text();
Shiny.setInputValue('selected_issue', issueNumber);
});
$(document).on('click', '#copy_button', function() {
var bodyText = $('#modal_body').text();
navigator.clipboard.writeText(bodyText).then(function() {
console.log('Text copied to clipboard');
}).catch(function(err) {
console.error('Failed to copy text: ', err);
});
});
"""
),
ui.tags.style(
"""
.shiny-data-grid {
width: 100% !important;
}
.issue-body {
white-space: pre-wrap;
word-wrap: break-word;
}
.label-tag {
display: inline-block;
padding: 2px 6px;
margin: 2px;
border-radius: 12px;
font-size: 0.8em;
font-weight: bold;
color: white;
}
.clickable-row {
cursor: pointer;
}
"""
),
),
ui.h2("GitHub Issues Explorer"),
ui.navset_tab(
ui.nav_panel(
"GitHub Issues",
ui.layout_sidebar(
ui.sidebar(
ui.input_text(
"repo",
"GitHub Repository",
value="rstudio/rstudio-docker-products",
),
ui.input_password(
"github_token",
"GitHub PAT",
placeholder="Optional",
value=os.getenv("GITHUB_TOKEN"),
),
ui.input_date("cutoff", "Cutoff Date", value=default_date),
ui.input_slider(
"num_issues",
"Number of Issues",
min=10,
max=500,
value=100,
step=10,
),
ui.input_action_button("load_issues", "Load Issues"),
ui.output_text("filtered_count_text"),
# ui.output_text("selected_issue"),
ui.download_button("download_json", "Download Main Table as JSON"),
open="open",
),
ui.div(
ui.h3("80% of Issues"),
ui.output_data_frame("issues_table_main"),
ui.h3("Remaining 20% of Issues"),
ui.output_data_frame("issues_table_secondary"),
class_="w-100",
),
),
),
ui.nav_panel(
"Chat",
ui.layout_sidebar(
ui.sidebar(
ui.input_radio_buttons(
"chat_model",
"Select Chat Model:",
choices=["AzureOpenAI", "Ollama", "Claude3.5Sonnet"],
selected="AzureOpenAI",
),
ui.input_text(
"ollama_endpoint",
"Ollama Endpoint:",
value=os.getenv(
"OLLAMA_ENDPOINT", default="http://localhost:11434"
),
),
ui.input_text(
"ollama_model",
"Ollama Model:",
value=os.getenv(
"OLLAMA_MODEL", default="llama3:8b"
),
),
# ui.input_selectize(
# "issue",
# "Select Issue:",
# test_data(),
# multiple=True,
# options={"plugins": ["clear_button"]},
# ),
ui.input_text(
"analyze_issue", "What issue do you want to analyze?"
),
ui.input_action_button("load_issue_query", "Create Issue Query"),
ui.input_action_button(
"reset_chat", "Reset chat", class_="btn-warning"
),
open="open",
),
ui.div(
ui.input_text_area(
"system_prompt",
"System Prompt",
rows=5,
placeholder="System prompt for the AI model",
width="100%",
autoresize=True,
value="""
You are an AI assistant helping with GitHub issues analysis. Use these
related issues to decide how to label the current issue:
```
{issues_context}
```""",
),
ui.chat_ui("chat"),
),
),
),
ui.nav_panel(
"About",
ui.layout_sidebar(
ui.sidebar(
ui.h4("App Information"),
ui.p("Version: 1.0"),
ui.p("Last Updated: 2023-06-15"),
),
ui.div(
ui.h2("About GitHub Issues Explorer"),
ui.p(
"This app allows users to explore closed issues from specified GitHub repositories. It was created using https://gallery.shinyapps.io/shiny-claude/"
),
ui.br(),
ui.h4("Features:"),
ui.tags.ul(
ui.tags.li(
"Fetch closed issues from any public GitHub repository"
),
ui.tags.li("Set a cutoff date to limit the issues retrieved"),
ui.tags.li("Control the number of issues to fetch"),
ui.tags.li("View issues in an interactive table"),
ui.tags.li(
"Issues are split into two tables: 80% in the main table and 20% in the secondary table"
),
ui.tags.li("Only issues with labels are displayed"),
ui.tags.li(
"Download main table issues as JSON for use with AzureOpenAI"
),
),
ui.br(),
ui.p(
"Developed using Shiny for Python and the Polars DataFrame library."
),
ui.p(
"For more information or to report issues, please visit our GitHub repository."
),
class_="w-100",
),
),
),
),
)
def server(input, output, session):
issues_data = reactive.Value(None)
filtered_count = reactive.Value(0)
test_data = reactive.Value({ "issues": { "1": "Issue 1"}})
initial_messages = [
{
"role": "assistant",
"content": "**Hello!** Would you like me to label a GitHub issue for you?",
},
]
chat = ui.Chat(id="chat", messages=initial_messages)
@reactive.effect
@reactive.event(chat.messages)
def set_reset_button_state():
if len(chat.messages()) > 2:
ui.update_action_button("reset_chat", disabled=False)
else:
ui.update_action_button("reset_chat", disabled=True)
@reactive.effect
@reactive.event(input.reset_chat)
async def reset():
# print("Resetting chat")
await chat.clear_messages()
@reactive.effect
@reactive.event(input.load_issue_query)
def load():
issue_number = input.analyze_issue()
if issues_data() is not None and issue_number:
df = issues_data()
issue = df.filter(pl.col("Number") == int(issue_number))
if issue.height > 0:
title = issue.select("Title").item()
body = issue.select("Body").item()
text = f"Analyze this issue to determin which issue labels should be applied #{issue_number}: {title}\n\nBody: {body}"
else:
text = f"Issue #{issue_number} not found in the loaded data."
else:
text = f"No issues data loaded or invalid issue number: {issue_number}"
chat.update_user_input(value=text)
@reactive.Effect
@reactive.event(input.load_issues)
def load_issues():
repo = input.repo()
cutoff_date = input.cutoff()
num_issues = input.num_issues()
if not repo:
ui.notification_show("Please enter a valid repository", type="warning")
return
try:
owner, repo_name = repo.split("/")
except ValueError:
ui.notification_show(
"Invalid repository format. Use 'username/repo'", type="error"
)
return
# Get the GitHub token from environment variable
github_token = input.github_token()
headers = {"Accept": "application/vnd.github.v3+json"}
if github_token:
headers["Authorization"] = f"token {github_token}"
ui.notification_show(
"Using authenticated GitHub API requests", type="message"
)
else:
ui.notification_show(
"GitHub token not found. Using unauthenticated requests with lower rate limits.",
type="warning",
)
with ui.Progress(min=0, max=100) as p:
p.set(message="Fetching issues...", detail="This may take a moment.")
try:
url = f"https://api.github.com/repos/{owner}/{repo_name}/issues"
params = {"state": "closed", "since": cutoff_date, "per_page": 100}
issues = []
total_issues = 0
filtered_issues = 0
while url and len(issues) < num_issues:
response = requests.get(url, params=params, headers=headers)
response.raise_for_status()
new_issues = response.json()
total_issues += len(new_issues)
labeled_issues = [
issue
for issue in new_issues
if "pull_request" not in issue and issue["labels"]
]
filtered_issues += len(new_issues) - len(labeled_issues)
issues.extend(labeled_issues[: num_issues - len(issues)])
if len(issues) >= num_issues:
break
url = response.links.get("next", {}).get("url")
params = {} # Clear params for subsequent requests
p.set(50, message="Processing data...")
data = [
{
"Number": issue["number"],
"Title": issue["title"],
"Created At": issue["created_at"],
"Closed At": issue["closed_at"],
"Labels": ", ".join(
[label["name"] for label in issue["labels"]]
),
"Body": issue["body"],
}
for issue in issues
]
df = pl.DataFrame(data)
df = df.with_columns(
[
pl.col("Created At")
.str.strptime(pl.Date, "%Y-%m-%dT%H:%M:%SZ")
.dt.date()
.cast(pl.Utf8)
,#.str.strftime("%Y-%m-%d"),
pl.col("Closed At")
.str.strptime(pl.Date, "%Y-%m-%dT%H:%M:%SZ")
.dt.date()
.cast(pl.Utf8)
,#.str.strftime("%Y-%m-%d"),
]
)
issues_data.set(df)
filtered_count.set(filtered_issues)
p.set(100, message="Complete!")
except requests.RequestException as e:
ui.notification_show(f"Error fetching issues: {str(e)}", type="error")
return
@output
@render.text
def filtered_count_text():
count = filtered_count()
if count > 0:
return f"Issues without labels filtered out: {count}"
return ""
@output
@render.text
def selected_issue_text():
return input.selected_issue()
@output
@render.data_frame
def issues_table_main():
if issues_data() is None:
return None
df = issues_data()
main_count = math.floor(len(df) * 0.8)
# Create a copy of the DataFrame to modify
df_copy = df.head(main_count).to_pandas()
# Convert the 'Number' column to HTML links
repo = input.repo()
df_copy["Number"] = df_copy["Number"].apply(
lambda x: ui.HTML(f'<a href="https://github.com/{repo}/issues/{x}" target="_blank">{x}</a>')
)
# Format the 'Labels' column as colored tags
df_copy["Labels"] = df_copy["Labels"].apply(
lambda labels: ui.HTML(''.join([
f'<span class="label-tag" style="background-color: {get_label_color(label)};">{label}</span>'
for label in labels.split(", ")
]))
)
df_copy["Body"] = df_copy["Body"].apply(truncate_text)
return render.DataTable(df_copy, selection_mode="row")
@output
@render.data_frame
def issues_table_secondary():
if issues_data() is None:
return None
df = issues_data()
main_count = math.floor(len(df) * 0.8)
df_copy = df.tail(len(df) - main_count).to_pandas()
# Convert the 'Number' column to HTML links
repo = input.repo()
df_copy["Number"] = df_copy["Number"].apply(
lambda x: ui.HTML(f'<a href="https://github.com/{repo}/issues/{x}" target="_blank">{x}</a>')
)
# Format the 'Labels' column as colored tags
df_copy["Labels"] = df_copy["Labels"].apply(
lambda labels: ui.HTML(''.join([
f'<span class="label-tag" style="background-color: {get_label_color(label)};">{label}</span>'
for label in labels.split(", ")
]))
)
df_copy["Body"] = df_copy["Body"].apply(truncate_text)
return render.DataTable(df_copy, selection_mode="row", styles={ "class": "clickable-row"})
def format_issues_data():
if issues_data() is not None:
df = issues_data()
repo = input.repo() # Get the current repository
main_count = math.floor(len(df) * 0.8)
main_data = df.head(main_count).to_dict(as_series=False)
formatted_data = {
"repo": repo,
"github_issues": [
{
"number": str(num),
"title": main_data["Title"][i],
"created_at": str(main_data["Created At"][i]),
"closed_at": str(main_data["Closed At"][i]),
"labels": main_data["Labels"][i].split(", "),
"body": main_data["Body"][i], # Include the issue body
}
for i, num in enumerate(main_data["Number"])
],
}
return json.dumps(formatted_data, indent=2)
else:
return "No issues data available."
@render.download(filename="github_issues.json")
def download_json():
# print("Download function called") # Debug print
yield format_issues_data()
@chat.on_user_submit
async def send_message():
issues_context = format_issues_data()
formatted_sys_prompt = input.system_prompt().format(issues_context=issues_context)
if input.chat_model() == "AzureOpenAI":
messages = chat.messages(format="openai")
# Update the system prompt
if messages and messages[0]["role"] == "system":
messages[0]["content"] = formatted_sys_prompt
else:
messages = (
{"role": "system", "content": formatted_sys_prompt},
) + messages
# print(messages)
response = azure_client.chat.completions.create(
model="gpt-4o",
messages=messages,
stream=True,
)
await chat.append_message_stream(response)
elif input.chat_model() == "Ollama":
messages = chat.messages(format="ollama")
# Update the system prompt
if messages and messages[0]["role"] == "system":
messages[0]["content"] = formatted_sys_prompt
else:
messages = (
{"role": "system", "content": formatted_sys_prompt},
) + messages
ollama_client = OllamaClient(host=input.ollama_endpoint())
response = ollama_client.chat(
model=input.ollama_model(),
messages=messages,
stream=True,
)
await chat.append_message_stream(response)
else: # Claude 3.5 Sonnet via Bedrock
messages = chat.messages(format="anthropic")
# Update the system prompt
# if messages and messages[0]["role"] == "system":
# messages[0]["content"] = formatted_sys_prompt
# else:
# messages = (
# {"role": "system", "content": formatted_sys_prompt},
# ) + messages
response = bedrock_client.messages.create(
model="anthropic.claude-3-5-sonnet-20240620-v1:0",
messages=messages,
stream=True,
system=formatted_sys_prompt,
max_tokens=1000,
)
# Append the response stream into the chat
await chat.append_message_stream(response)
@reactive.Effect
@reactive.event(input.selected_issue)
def show_issue_modal():
issue_number = input.selected_issue()
if issue_number and issues_data() is not None:
df = issues_data()
issue = df.filter(pl.col("Number") == int(issue_number)).to_pandas()
if not issue.empty:
modal_content = ui.modal(
ui.h3(f"Issue #{issue_number}: {issue['Title'].iloc[0]}"),
ui.p(issue["Body"].iloc[0], id="modal_body"),
ui.input_action_button("copy_button", "Copy to Clipboard"),
title="Issue Details",
easy_close=True,
footer=None,
)
ui.modal_show(modal_content)
@reactive.Effect
@reactive.event(input.copy_button)
def copy_to_clipboard():
ui.notification_show("Text copied to clipboard!", type="message")
app = App(app_ui, server)