- Introduction
- Review
- Reinforcement Learning
- Deep Learning
- Why is deep learning useful for RL?
- Challenges of Deep RL
- Landscape of methods
- Value Function Estimation
- Action-Value Function Estimation
- Neural-fitted Q iteration (NFQ)
- Deep Q Networks (DQN)
- DQN Extensions
- Double DQN
- Dueling DQN
- Prioritized Experience Replay
- Normalized Advantage Function
- Bootstrapped DQN
- Applications
- Introduction
- The REINFORCE gradient estimator
- Policy Gradient Extensions
- Trust Region Policy Optimization
- Natural Policy Gradients
- Proximal Policy Optimization
- Actor-Critic Paradigm
- Distributed RL
- Gorila
- Advantage Actor-Critic (A2C)
- Applications
- Robotics
- Introduction
- Monte Carlo Tree Search (MCTS)
- UCT-to-Realtime
- Applications
- Introduction to Hierarchical RL
- Options
- Options DQN
- Option-Critic Architecture
- Hierarchical DQN
- Feudal Networks