-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
189 lines (157 loc) · 5.54 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import time
import argparse
import numpy as np
import mlx.nn as nn
import mlx.core as mx
import mlx.optimizers as optim
from tqdm import tqdm
from functools import partial
from typing import Callable
from models import MLP
from cfm import str_to_cfm
from odeint import NeuralODE
from data import sample_moons, sample_8gaussians
parser = argparse.ArgumentParser(add_help=True)
parser.add_argument(
"-m", "--method", type=str, default="vp", choices=["cfm", "vp"], help="cfm method"
)
parser.add_argument("--sigma", type=float, default=0.1, help="sigma for cfm")
parser.add_argument(
"--solver",
type=str,
default="euler",
choices=["euler", "midpoint", "dopri5"],
help="ODE solver",
)
parser.add_argument("-b", "--batch_size", type=int, default=512, help="batch size")
parser.add_argument("-e", "--steps", type=int, default=20000, help="number of steps")
parser.add_argument("--lr", type=float, default=1e-3, help="learning rate")
parser.add_argument("--seed", type=int, default=42, help="random seed")
parser.add_argument("--cpu", action="store_true", help="use cpu only")
class NeuralNetwork:
def __init__(
self,
model: nn.Module,
optimizer: optim.Optimizer,
flow_matcher,
integrator,
prior_data: Callable,
target_data: Callable,
):
self.model = model
self.optimizer = optimizer
self.flow_matcher = flow_matcher
self.integrator = integrator
# data functions
self.prior_data = prior_data
self.target_data = target_data
# bookkeeping
self.train_error_trace = []
def eval_fn(self, X, T):
t, xt, ut = self.flow_matcher.sample_location_and_conditional_flow(X, T)
vt = self.model(t, xt, repeat=False)
loss = nn.losses.mse_loss(vt, ut, reduction="mean")
return loss
def train(self, steps: int, batch_size: int):
state = [self.model.state, self.optimizer.state]
@partial(mx.compile, inputs=state, outputs=state)
def step(X, T):
train_step_fn = nn.value_and_grad(self.model, self.eval_fn)
loss, grads = train_step_fn(X, T)
self.optimizer.update(self.model, grads)
return loss
step_bar = tqdm(range(steps), desc="Training", unit="step")
self.model.train()
for _ in step_bar:
X = self.prior_data(batch_size)
T, _ = self.target_data(batch_size)
loss = step(X, T)
mx.eval(state)
self.train_error_trace.append(loss.item())
postfix = {"loss": f"{loss.item():.3f}"}
step_bar.set_postfix(postfix)
def use(self, xs=1024, ts=128):
start_t = time.time()
self.model.eval()
traj = self.integrator.trajectory(
self.prior_data(xs), t_span=mx.linspace(0, 1, ts)
)
print(f"Sampled: {time.time() - start_t:.2f} sec")
return traj
def main(args):
mx.random.seed(args.seed)
np.random.seed(args.seed)
kwargs = {
"n_inputs": 2,
"n_hiddens_list": [64] * 2,
"n_outputs": 2,
"activation_f": "selu",
"time_varying": True,
}
model = MLP(**kwargs)
model.summary()
flow_matcher = str_to_cfm(args.method, sigma=args.sigma)
print(flow_matcher)
integrator = NeuralODE(model, solver=args.solver, atol=1e-4, rtol=1e-4)
print(integrator)
optimizer = optim.AdamW(learning_rate=args.lr)
net = NeuralNetwork(
model, optimizer, flow_matcher, integrator, sample_8gaussians, sample_moons
)
net.train(args.steps, args.batch_size)
traj = net.use(xs=1024, ts=128)
#! plotting
import matplotlib.pyplot as plt
from sklearn.neighbors import KernelDensity
fig, ax = plt.subplots(1, 1, figsize=(5, 5))
ax.scatter(
traj[0, :, 0],
traj[0, :, 1],
s=10,
alpha=0.8,
c="k",
label=r"$\mathbf{x}_0 \sim \pi(\mathbf{x})$",
)
ax.scatter(traj[:, :, 0], traj[:, :, 1], s=0.2, alpha=0.15, c="k")
ax.scatter(
traj[-1, :, 0],
traj[-1, :, 1],
s=4,
alpha=1,
c="blue",
label=r"$\mathbf{x}_1 \approx \mathbf{x}^\prime\;[\sim p(\mathbf{x})]$",
)
def plot_kde(data, x_grid, y_grid, ax, bandwidth=0.3, cmap="Blues", alpha=0.5):
kde = KernelDensity(bandwidth=bandwidth, kernel="gaussian")
kde.fit(data)
grid_samples = mx.stack([mx.flatten(x_grid), mx.flatten(y_grid)]).T
log_density = kde.score_samples(grid_samples)
density = mx.exp(log_density).reshape(x_grid.shape)
ax.contourf(x_grid, y_grid, density, levels=100, cmap=cmap, alpha=alpha)
prior_data = traj[0, :, :2] # Prior sample z(S)
last_data = traj[-1, :, :2] # Last sample z(0)
x_min = traj[:, :, 0].min() - 1
x_max = traj[:, :, 0].max() + 1
y_min = traj[:, :, 1].min() - 1
y_max = traj[:, :, 1].max() + 1
x_grid, y_grid = mx.meshgrid(
mx.linspace(x_min, x_max, 100), mx.linspace(y_min, y_max, 100)
)
plot_kde(prior_data, x_grid, y_grid, ax, bandwidth=0.5, cmap="Reds", alpha=0.2)
plot_kde(last_data, x_grid, y_grid, ax, bandwidth=0.5, cmap="Purples", alpha=0.2)
ax.set_xticks([])
ax.set_yticks([])
ax.set_title(f"{flow_matcher.name} ({args.solver})")
ax.legend()
fig.tight_layout()
fig.savefig(
f"media/trajectories_{args.method}_{args.solver}.png",
dpi=300,
bbox_inches="tight",
)
plt.show()
if __name__ == "__main__":
args = parser.parse_args()
if args.cpu:
mx.set_default_device(mx.cpu)
main(args)