-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathpsgd.py
208 lines (157 loc) · 7.5 KB
/
psgd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import numpy as np
from common.common import (Algorithm, LEARNING_RATE_CONSTANT,
compute_classification_counts, DEFAULT_NUM_ITERS)
from lossfunctions.logistic_regression import (LogisticRegression,
LogisticRegressionRegular)
from lossfunctions.huber_svm import HuberSVM, HuberSVMRegular
from common.constraints import constrain_l2_norm
from common.noise import compute_gamma_noise
import logging
from scipy.sparse import csr_matrix
import os
# Suggested in section 4.3
B = 50
CONVERGENCE_THRESHOLD = 0.01
def psgd_minibatched(x, y, loss_gradient, b, learning_rate_function,
num_iters, stop_early=False, sparse=False,
l2_constraint=None, lambda_param=None):
"""Mini-batched version of psgd"""
n = x.shape[0]
if n == 0:
raise Exception("No training Data")
tau = np.random.permutation(n)
batches_x = None
if sparse:
batches_x = [x[tau[i: min(i+b,n)]] for i in range(0,n,b)]
else:
batches_x = [
np.array([x[tau[j]] for j in range(i, min(i + b, n))])
for i in range(0, n, b)
]
batches_y = [
np.array([y[tau[j]] for j in range(i, min(i + b, n))])
for i in range(0, n, b)
]
if l2_constraint is None:
theta = np.zeros(shape=x.shape[1])
# uncomment this line to start with a random theta
# theta = (np.random.rand(x.shape[1]) - .5) * 10
else:
theta = (np.random.rand(x.shape[1]) - .5) * 2 * l2_constraint
t = 1
for i in range(num_iters):
for j in range(len(batches_x)):
batch_x = batches_x[j]
batch_y = batches_y[j]
theta = theta - learning_rate_function(t) * loss_gradient(
theta, batch_x, batch_y, lambda_param=lambda_param)
if l2_constraint is not None:
theta = constrain_l2_norm(theta, l2_constraint)
t += 1
return theta
def private_convex_psgd(x, y, learning_rate, lambda_param, num_iters, epsilon, delta,
loss_gradient, b, L,
sparse=False, l2_constraint=None,
lr_type='constant'):
# Suggested in section 4.3
# step_size = 1 / np.sqrt(x.shape[0])
learning_rate_function = None
beta = L*L
m = x.shape[0]
c = learning_rate
k = num_iters
def constant_learning_rate_function(t):
return learning_rate
def decreasing_learning_rate_function(t):
return 2 / (beta * (t + (m**c)))
def sqrt_learning_rate_function(t):
return 2 / (beta * (np.sqrt(t) + (m**c)))
if lr_type == 'constant':
l2_sensitivity = 2 * k * L * learning_rate / b
learning_rate_function = constant_learning_rate_function
elif lr_type == 'decreasing':
l2_sensitivity = (4 * L / (beta*b)) * sum([1 / (((j * m) / b) + 1 + (m**c))
for j in range(k)])
learning_rate_function = decreasing_learning_rate_function
elif lr_type == 'sqrt':
l2_sensitivity = (4 * L / (beta*b)) * sum([1 / (np.sqrt((j*m/b) + 1) + (m**c))
for j in range(k)])
learning_rate_function = sqrt_learning_rate_function
w = psgd_minibatched(x, y, loss_gradient, b, learning_rate_function,
num_iters, sparse=sparse, l2_constraint=l2_constraint)
np.random.seed(ord(os.urandom(1)))
std_dev = np.sqrt(2*np.log(2 / delta)) * l2_sensitivity / epsilon
noise = np.random.normal(scale=std_dev, size=x.shape[1])
theta_priv = w + noise
if l2_constraint is not None:
theta_priv = constrain_l2_norm(theta_priv, l2_constraint)
return theta_priv
def private_strongly_convex_psgd(x, y, learning_rate, lambda_param, num_iters, epsilon, delta,
loss_gradient, b, L,
sparse=False, l2_constraint=None):
# This is the setting from the paper
# We tune it instead
# R = min(1 / lambda_param, l2_constraint)
R = l2_constraint
L_reg = L + lambda_param * R
beta = L*L + lambda_param
gamma = lambda_param
m = x.shape[0]
l2_sensitivity = 2 * L_reg / (gamma * m)
def regularized_learning_rate_function(t):
return min(1/beta, 1/(gamma*t))
learning_rate_function = regularized_learning_rate_function
w = psgd_minibatched(x, y, loss_gradient, b, learning_rate_function,
num_iters, sparse=sparse, l2_constraint=l2_constraint, lambda_param=lambda_param)
np.random.seed(ord(os.urandom(1)))
std_dev = np.sqrt(2*np.log(2 / delta)) * l2_sensitivity / epsilon
noise = np.random.normal(scale=std_dev, size=x.shape[1])
theta_priv = w + noise
if l2_constraint is not None:
theta_priv = constrain_l2_norm(theta_priv, l2_constraint)
return theta_priv
class PrivateConvexPSGDLR(Algorithm):
def run_classification(x, y, epsilon, delta, lambda_param,
learning_rate=None, num_iters=DEFAULT_NUM_ITERS, b=B,
sparse=False, l2_constraint=None,
lr_type='constant', L=1):
return private_convex_psgd(x, y, learning_rate, lambda_param, num_iters, epsilon, delta,
LogisticRegression.gradient, b, L, sparse,
l2_constraint=l2_constraint,
lr_type=lr_type)
def name():
return ("Private Convex Permutation-Based Stochastic Gradient Descent"
"LR")
class PrivateConvexPSGDSVM(Algorithm):
def run_classification(x, y, epsilon, delta, lambda_param,
learning_rate=None, num_iters=DEFAULT_NUM_ITERS, b=B,
sparse=False, l2_constraint=None,
lr_type='constant', L=1):
return private_convex_psgd(x, y, learning_rate, lambda_param, num_iters, epsilon, delta,
HuberSVM.gradient, b, L, sparse,
l2_constraint=l2_constraint,
lr_type=lr_type)
def name():
return ("Private Convex Permutation-Based Stochastic Gradient Descent "
"LR")
class PrivateStronglyConvexPSGDLR(Algorithm):
def run_classification(x, y, epsilon, delta, lambda_param,
learning_rate=None, num_iters=DEFAULT_NUM_ITERS, b=B,
sparse=False, l2_constraint=None,
L=1):
return private_strongly_convex_psgd(x, y, learning_rate, lambda_param, num_iters, epsilon, delta,
LogisticRegressionRegular.gradient, b, L, sparse,
l2_constraint=l2_constraint)
def name():
return ("Private Strongly Convex Permutation-Based Stochastic Gradient Descent"
"LR")
class PrivateStronglyConvexPSGDSVM(Algorithm):
def run_classification(x, y, epsilon, delta, lambda_param,
learning_rate=None, num_iters=DEFAULT_NUM_ITERS, b=B,
sparse=False, l2_constraint=None,
L=1):
return private_strongly_convex_psgd(x, y, learning_rate, lambda_param, num_iters, epsilon, delta,
HuberSVMRegular.gradient, b, L, sparse,
l2_constraint=l2_constraint)
def name():
return ("Private Strongly Convex PSGD SVM")