-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAgent.py
273 lines (226 loc) · 7.72 KB
/
Agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import numpy as np
import hashlib, random, time, json, os
class QLearningAgent:
#Q-learning
learning_rate = 0 #alpha
discount_factor = 1 #gamma
greedy = 0 #greedy
Q = {} #initial conditions
#data files
filename = './data/data.json'
training = 0
#constructor
def __init__(self,
learning_rate = 0.1,
discount_factor = 0.9,
greedy = 0.9):
self.learning_rate = learning_rate
self.discount_factor = discount_factor
self.greedy = greedy
#Load data.
#params: none
#return: void
def load_data(self):
if not os.path.exists(self.filename):
f = open(self.filename, 'w')
f.write('')
f.close()
f = open(self.filename, 'r')
data = f.readlines()
f.close()
if len(data) > 0:
temp = json.loads(data[0])
self.training = int(temp['0'])
self.Q = temp['1']
#Save data.
#params: none
#return: void
def save_data(self):
data = json.dumps({'0': self.training, '1': self.Q})
f = open(self.filename, 'w')
f.write(data)
f.close()
#Q-learning study method.
#params:
# observations: dict
# action: string
# next_observations: dict
# reward: number
#return: next observations
def study(self, observations, action, next_observations, reward):
state = self.get_key(observations)
next_state = self.get_key(next_observations)
next_action = self.get_optimal_action(next_observations)
#Q[n]
old_value = self.Q[state][action]
#Q[n+1]
future_value = self.Q[next_state][next_action]
#Q[n] <- Q[n] + a * (R[n] + y * Q[n+1] - Q[n])
self.Q[state][action] = old_value + self.learning_rate * (reward + self.discount_factor * future_value - old_value)
#self.training = self.training + 1
return next_observations
#print Q.
#params: none
#return: void
def print_Q(self):
for state, actions in self.Q.items():
print(str(state) + ': ' + str(actions))
def get_Q_zero_count(self):
count = 0
for state, actions in self.Q.items():
for action, value in actions.items():
if value == 0:
count += 1
return count
def get_Q_max_value(self):
v = 0
for state, actions in self.Q.items():
for action, value in actions.items():
if value > v:
v = value
return v
def get_Q_min_value(self):
v = 0
for state, actions in self.Q.items():
for action, value in actions.items():
if value < v:
v = value
return v
#get a randomize action by observations.
#params:
# observations : dict
#return: string
def get_random_action(self, observations):
state = self.get_key(observations)
actions = list(self.Q[state].keys())
if len(actions) == 0: return ''
rand = random.randint(0, len(actions) - 1)
return actions[rand]
#get a optimal action by observations.
#params:
# observations : dict
#return: string
def get_optimal_action(self, observations):
state = self.get_key(observations)
actions = list(self.Q[state].keys())
if len(actions) == 0: return ''
#random action order
for i in range(0, len(actions)):
rand = random.randint(0, len(actions) - 1)
temp = actions[i]
actions[i] = actions[rand]
actions[rand] = temp
#get the max one
action = actions[0]
max_value = self.Q[state][action]
for i in range(1, len(actions)):
if self.Q[state][actions[i]] > max_value:
action = actions[i]
max_value = self.Q[state][actions[i]]
return action
#get a action by observations.
#params:
# observations : dict
#return: string
def get_action(self, observations):
if random.random() < self.greedy:
return self.get_optimal_action(observations)
else:
return self.get_random_action(observations)
#add a new state
#params:
# observations : dict
# actions : array
#return: void
def add_state(self, observations, actions, f):
state = self.get_key(observations)
ff = self.get_key(f)
if state in self.Q:
return
# print ( state )
# print ( observations )
# existed_keys = {}
# existed_errs = 0
# for key1, val1 in self.Q.items():
# obj1 = json.loads(key1)
# temp = {}
# errs = 0
# for key2, val2 in observations.items():
# if key2 in obj1:
# temp.update({key2: obj1[key2]})
# errs += np.mean((np.array(obj1[key2]) - np.array(val2)) ** 2)
# if len(temp) > len(existed_keys):
# existed_keys = temp
# existed_errs = errs
# elif len(temp) == len(existed_keys):
# if existed_errs > errs:
# existed_keys = temp
# existed_errs = errs
#
# if len(existed_keys) > 0:
# temp = self.get_key(existed_keys)
# if temp in self.Q:
# self.Q[state] = {}
# for i in range(0, len(actions)):
# self.Q[state][actions[i]] = self.Q[temp][actions[i]]
# return
#renew Q
self.Q[state] = {}
#actions = self.get_actions(observations)
for i in range(0, len(actions)):
if ff not in self.Q:
self.Q[state][actions[i]] = 0
else:
self.Q[state][actions[i]] = self.Q[ff][actions[i]]
#named state by observations
#params:
# observations : dict
#return: string
def get_key(self, observations):
temp = '{'
keys = sorted(list(observations.keys()))
for i in range(0, len(keys) - 1):
temp += '"' + str(keys[i]) + '": ' + str(observations[keys[i]]) + ', '
if len(keys) > 0:
temp += '"' + str(keys[len(keys) - 1]) + '": ' + str(observations[keys[len(keys) - 1]]) + ''
temp += '}'
return temp
#main function for testing.
if __name__ == '__main__':
agent = QLearningAgent()
for i in range(0, 10):
print('Round:', i + 1)
position = 1
prev_state = {}
curr_state = {}
prev_action = ''
curr_action = ''
reward = 0
while True:
#Renew state
prev_state = curr_state
curr_state = {'S1': position}
if position == 1:
agent.add_state(curr_state, ['R'])
elif position == 6:
agent.add_state(curr_state, ['L'])
else:
agent.add_state(curr_state, ['L', 'R'])
#Renew action
prev_action = curr_action
curr_action = agent.get_action(curr_state)
if curr_action == 'L':
position = position - 1
elif curr_action == 'R':
position = position + 1
#Study
if prev_action != '':
reward = 0
if curr_state['S1'] == 6:
reward = 1
agent.study(prev_state, prev_action, curr_state, reward)
print(curr_state)
time.sleep(0.1)
if reward:
break
print('END')