Replies: 15 comments 40 replies
-
@cobycloud we are going to have an abstract class in See the code sample below: from abc import ABC, abstractmethod
class AbstractAgent(ABC):
@abstractmethod
def process(self, input_data):
pass
@abstractmethod
def get_capabilities(self):
pass Then we will have a Here's an example: from swarmauri_core.agents.abstract_agent import AbstractAgent
class BaseAgent(AbstractAgent):
def __init__(self, name):
self.name = name
def process(self, input_data):
raise NotImplementedError("Subclasses must implement the `process` method.")
def get_capabilities(self):
return f"Agent {self.name} has no specific capabilities defined." Next, we'll implement heterogeneous agents that inherit from Here's an example: from swarmauri.agent.base.base_agent import BaseAgent
class LanguageModelAgent(BaseAgent):
def process(self, input_data):
return f"Processed text: {input_data}"
def get_capabilities(self):
return f"{self.name} specializes in language modeling."
class ImageProcessingAgent(BaseAgent):
def process(self, input_data):
return f"Processed image with ID: {input_data}"
def get_capabilities(self):
return f"{self.name} specializes in image processing." Finally, we'll implement a See the code: class MultiagentManager:
def __init__(self):
self.agents = {}
def register_agent(self, agent):
self.agents[agent.name] = agent
def list_agents(self):
return {name: agent.get_capabilities() for name, agent in self.agents.items()}
def execute_task(self, agent_name, input_data):
if agent_name not in self.agents:
raise ValueError(f"Agent {agent_name} not found.")
return self.agents[agent_name].process(input_data) This setup ensures modularity and scalability, allowing us to add new heterogeneous agents seamlessly and manage them through the |
Beta Was this translation helpful? Give feedback.
-
example of a control plane like mechanism: import asyncio
from typing import Dict, List, Any, Callable
from collections import defaultdict
import uuid
class ControlPlane:
def __init__(self):
self.services: Dict[str, Callable] = {} # Registered services
self.task_queue: asyncio.Queue = asyncio.Queue() # Queue for incoming tasks
self.task_registry: Dict[str, Dict[str, Any]] = {} # Tracks ongoing tasks
self.message_queue: Dict[str, asyncio.Queue] = defaultdict(asyncio.Queue) # Per-service queues
def register_service(self, service_name: str, handler: Callable):
"""
Register a new service with the control plane.
:param service_name: Name of the service.
:param handler: Coroutine function that processes messages.
"""
self.services[service_name] = handler
print(f"Service '{service_name}' registered.")
def orchestrate_task(self, task: Dict[str, Any]) -> str:
"""
Decide which service should handle the task next.
:param task: The task metadata and payload.
:return: The selected service name.
"""
# Example: Use a round-robin or task-specific strategy for orchestration
available_services = list(self.services.keys())
selected_service = available_services[hash(task['task_id']) % len(available_services)]
return selected_service
async def dispatch_task(self, task_id: str, task_data: Dict[str, Any]):
"""
Dispatch a task to the appropriate service based on orchestration logic.
:param task_id: Unique identifier for the task.
:param task_data: Task metadata and payload.
"""
service_name = self.orchestrate_task(task_data)
print(f"Dispatching task '{task_id}' to service '{service_name}'.")
await self.message_queue[service_name].put(task_data)
async def process_tasks(self):
"""
Continuously process incoming tasks from the task queue.
"""
while True:
task_data = await self.task_queue.get()
task_id = str(uuid.uuid4()) # Generate a unique task ID
self.task_registry[task_id] = task_data
print(f"Received new task '{task_id}'.")
await self.dispatch_task(task_id, task_data)
async def start_services(self):
"""
Start all registered services to process their respective message queues.
"""
for service_name, handler in self.services.items():
asyncio.create_task(self.run_service(service_name, handler))
async def run_service(self, service_name: str, handler: Callable):
"""
Continuously process messages from the service's message queue.
:param service_name: Name of the service.
:param handler: Coroutine function that processes messages.
"""
while True:
message = await self.message_queue[service_name].get()
print(f"Service '{service_name}' processing message: {message}")
await handler(message)
async def add_task(self, task_data: Dict[str, Any]):
"""
Add a new task to the control plane's task queue.
:param task_data: Task metadata and payload.
"""
await self.task_queue.put(task_data)
# Example Usage
async def sample_service_handler(task: Dict[str, Any]):
"""
Example handler function for a registered service.
:param task: The task metadata and payload.
"""
print(f"Task processed: {task}")
await asyncio.sleep(1) # Simulate processing time
async def main():
control_plane = ControlPlane()
# Register services
control_plane.register_service("service_a", sample_service_handler)
control_plane.register_service("service_b", sample_service_handler)
# Start services
asyncio.create_task(control_plane.start_services())
# Add tasks to the control plane
await control_plane.add_task({"task_type": "example", "payload": "Task 1"})
await control_plane.add_task({"task_type": "example", "payload": "Task 2"})
# Start processing tasks
await control_plane.process_tasks()
if __name__ == "__main__":
asyncio.run(main())
|
Beta Was this translation helpful? Give feedback.
-
lets also analyze this Publish-Subscribe (Pub-Sub) Pattern import asyncio
from typing import Any, Callable, Dict, List, Set
from uuid import uuid4
class PubSubBroker:
def __init__(self):
"""
Initialize the Publish-Subscribe Broker.
Manages topics and subscriptions for agents.
"""
self._topics: Dict[str, Set[str]] = {} # Topic to subscriber mappings
self._subscribers: Dict[str, asyncio.Queue] = {} # Subscriber ID to message queue
self._topic_queues: Dict[str, asyncio.Queue] = {} # Topic to message queue
async def subscribe(self, topic: str) -> str:
"""
Subscribe an agent to a specific topic.
Args:
topic (str): The topic to subscribe to
Returns:
str: Unique subscriber ID
"""
subscriber_id = str(uuid4())
# Create message queue for this subscriber
self._subscribers[subscriber_id] = asyncio.Queue()
# Add subscriber to topic
if topic not in self._topics:
self._topics[topic] = set()
self._topics[topic].add(subscriber_id)
return subscriber_id
async def unsubscribe(self, topic: str, subscriber_id: str):
"""
Unsubscribe an agent from a topic.
Args:
topic (str): The topic to unsubscribe from
subscriber_id (str): Unique identifier of the subscriber
"""
if topic in self._topics and subscriber_id in self._topics[topic]:
self._topics[topic].remove(subscriber_id)
# Optional: Clean up if no subscribers remain
if not self._topics[topic]:
del self._topics[topic]
async def publish(self, topic: str, message: Any):
"""
Publish a message to a specific topic.
Args:
topic (str): The topic to publish to
message (Any): The message to be published
"""
if topic not in self._topics:
return
# Distribute message to all subscribers of this topic
for subscriber_id in self._topics[topic]:
await self._subscribers[subscriber_id].put(message)
async def receive(self, subscriber_id: str) -> Any:
"""
Receive messages for a specific subscriber.
Args:
subscriber_id (str): Unique identifier of the subscriber
Returns:
Any: Received message
"""
return await self._subscribers[subscriber_id].get()
class Agent:
def __init__(self, broker: PubSubBroker, name: str):
"""
Initialize an agent with a name and connection to the broker.
Args:
broker (PubSubBroker): The publish-subscribe broker
name (str): Name of the agent
"""
self.broker = broker
self.name = name
self.subscribed_topics: List[str] = []
self.subscriber_id: str = None
async def subscribe(self, topic: str):
"""
Subscribe the agent to a topic.
Args:
topic (str): The topic to subscribe to
"""
self.subscriber_id = await self.broker.subscribe(topic)
self.subscribed_topics.append(topic)
print(f"{self.name} subscribed to {topic}")
async def publish(self, topic: str, message: Any):
"""
Publish a message to a topic.
Args:
topic (str): The topic to publish to
message (Any): The message to be published
"""
print(f"{self.name} publishing to {topic}: {message}")
await self.broker.publish(topic, message)
async def listen(self):
"""
Continuously listen for messages on subscribed topics.
"""
while True:
try:
message = await self.broker.receive(self.subscriber_id)
print(f"{self.name} received: {message}")
except Exception as e:
print(f"{self.name} listening error: {e}")
break
async def main():
# Create a broker
broker = PubSubBroker()
# Create agents
data_agent = Agent(broker, "Data Collector")
analysis_agent = Agent(broker, "Data Analyzer")
visualization_agent = Agent(broker, "Visualization Agent")
# Subscribe agents to topics
await data_agent.subscribe("raw_data")
await analysis_agent.subscribe("processed_data")
await visualization_agent.subscribe("visualization_request")
# Simulate listening and publishing
listen_tasks = [
asyncio.create_task(data_agent.listen()),
asyncio.create_task(analysis_agent.listen()),
asyncio.create_task(visualization_agent.listen())
]
# Simulate some interactions
await data_agent.publish("raw_data", {"sensor_id": 1, "temperature": 25.5})
await analysis_agent.publish("processed_data", {"avg_temp": 25.5, "trend": "stable"})
await visualization_agent.publish("visualization_request", "generate_temperature_chart")
# Wait a bit to see messages
await asyncio.sleep(2)
# Clean up tasks
for task in listen_tasks:
task.cancel()
if __name__ == "__main__":
asyncio.run(main())``` |
Beta Was this translation helpful? Give feedback.
-
lets also analyze this "Blackboard Communication Strategy" import asyncio
from dataclasses import dataclass, field
from typing import Any, Dict, List, Optional
from enum import Enum, auto
class KnowledgeState(Enum):
INCOMPLETE = auto()
PARTIAL = auto()
COMPLETE = auto()
@dataclass
class BlackboardData:
"""
Represents a piece of knowledge on the blackboard
"""
content: Any
state: KnowledgeState = field(default=KnowledgeState.INCOMPLETE)
contributor: Optional[str] = None
confidence_level: float = 0.0
class BlackboardAgent:
def __init__(self, name: str, capabilities: List[str]):
"""
Initialize an agent with specific capabilities
Args:
name (str): Name of the agent
capabilities (List[str]): List of problem-solving capabilities
"""
self.name = name
self.capabilities = capabilities
async def process(self, blackboard: 'Blackboard', problem: Dict[str, Any]) -> Optional[Dict[str, Any]]:
"""
Process a problem based on the agent's capabilities
Args:
blackboard (Blackboard): The shared blackboard
problem (Dict[str, Any]): Problem to be solved
Returns:
Optional solution contribution
"""
raise NotImplementedError("Subclasses must implement processing method")
class Blackboard:
def __init__(self):
"""
Initialize the shared blackboard
"""
self._knowledge: Dict[str, BlackboardData] = {}
self._agents: List[BlackboardAgent] = []
self._solution_lock = asyncio.Lock()
self._problem_state: KnowledgeState = KnowledgeState.INCOMPLETE
def register_agent(self, agent: BlackboardAgent):
"""
Register an agent to work on the blackboard
Args:
agent (BlackboardAgent): Agent to be registered
"""
self._agents.append(agent)
def add_knowledge(self, key: str, content: Any, contributor: str):
"""
Add or update knowledge on the blackboard
Args:
key (str): Unique identifier for the knowledge
content (Any): Knowledge content
contributor (str): Name of the agent contributing the knowledge
"""
async with self._solution_lock:
existing = self._knowledge.get(key)
confidence = self._calculate_confidence(existing, content)
new_data = BlackboardData(
content=content,
contributor=contributor,
confidence_level=confidence,
state=self._determine_state(content)
)
self._knowledge[key] = new_data
self._update_problem_state()
def _calculate_confidence(self, existing: Optional[BlackboardData], new_content: Any) -> float:
"""
Calculate confidence level for new knowledge
Args:
existing (Optional[BlackboardData]): Existing knowledge
new_content (Any): New content to be added
Returns:
float: Confidence level
"""
if not existing:
return 0.5 # Default confidence for first contribution
# Simple confidence calculation logic
return min(existing.confidence_level + 0.2, 1.0)
def _determine_state(self, content: Any) -> KnowledgeState:
"""
Determine the knowledge state based on content
Args:
content (Any): Content to evaluate
Returns:
KnowledgeState: State of the knowledge
"""
if content is None:
return KnowledgeState.INCOMPLETE
elif isinstance(content, dict) and not content:
return KnowledgeState.INCOMPLETE
elif isinstance(content, list) and len(content) < 2:
return KnowledgeState.PARTIAL
return KnowledgeState.COMPLETE
def _update_problem_state(self):
"""
Update the overall problem-solving state
"""
states = [data.state for data in self._knowledge.values()]
if all(state == KnowledgeState.COMPLETE for state in states):
self._problem_state = KnowledgeState.COMPLETE
elif any(state == KnowledgeState.COMPLETE for state in states):
self._problem_state = KnowledgeState.PARTIAL
else:
self._problem_state = KnowledgeState.INCOMPLETE
async def solve_problem(self, problem: Dict[str, Any]):
"""
Coordinate agents to solve a problem
Args:
problem (Dict[str, Any]): Problem to be solved
"""
print(f"Starting problem-solving process: {problem}")
# Distribute problem to agents
tasks = [
asyncio.create_task(agent.process(self, problem))
for agent in self._agents
]
# Wait for all agents to contribute
await asyncio.gather(*tasks)
# Final solution assessment
if self._problem_state == KnowledgeState.COMPLETE:
print("Problem solved successfully!")
self._print_solution()
else:
print("Problem solving incomplete.")
def _print_solution(self):
"""
Print the final solution from the blackboard
"""
print("\n--- Final Blackboard Solution ---")
for key, data in self._knowledge.items():
print(f"{key}: {data.content} (Contributor: {data.contributor}, "
f"Confidence: {data.confidence_level:.2f})")
# Specialized Agents for Problem Solving
class DataCollectionAgent(BlackboardAgent):
async def process(self, blackboard: Blackboard, problem: Dict[str, Any]) -> Optional[Dict[str, Any]]:
"""
Collect initial data for the problem
"""
await asyncio.sleep(1) # Simulate data collection
initial_data = {
"raw_data": [1, 2, 3, 4, 5],
"metadata": {"source": "sensors"}
}
for key, value in initial_data.items():
blackboard.add_knowledge(key, value, self.name)
return initial_data
class DataAnalysisAgent(BlackboardAgent):
async def process(self, blackboard: Blackboard, problem: Dict[str, Any]) -> Optional[Dict[str, Any]]:
"""
Analyze and process collected data
"""
await asyncio.sleep(1.5) # Simulate analysis
raw_data = blackboard._knowledge.get('raw_data')
if raw_data:
analysis = {
"statistics": {
"mean": sum(raw_data.content) / len(raw_data.content),
"variance": sum((x - (sum(raw_data.content) / len(raw_data.content))) ** 2 for x in raw_data.content) / len(raw_data.content)
}
}
blackboard.add_knowledge('data_analysis', analysis, self.name)
return analysis
class SolutionAgent(BlackboardAgent):
async def process(self, blackboard: Blackboard, problem: Dict[str, Any]) -> Optional[Dict[str, Any]]:
"""
Synthesize final solution
"""
await asyncio.sleep(2) # Simulate solution synthesis
analysis = blackboard._knowledge.get('data_analysis')
if analysis:
solution = {
"final_solution": {
"insights": "Problem solved based on collected and analyzed data",
"key_metrics": analysis.content['statistics']
}
}
blackboard.add_knowledge('solution', solution, self.name)
return solution
async def main():
# Create blackboard
blackboard = Blackboard()
# Create and register agents
data_collector = DataCollectionAgent("Data Collector", ["data_gathering"])
data_analyzer = DataAnalysisAgent("Data Analyzer", ["statistical_analysis"])
solution_agent = SolutionAgent("Solution Synthesizer", ["solution_generation"])
blackboard.register_agent(data_collector)
blackboard.register_agent(data_analyzer)
blackboard.register_agent(solution_agent)
# Define a sample problem
problem = {
"type": "data_analysis",
"description": "Analyze sensor data and generate insights"
}
# Solve the problem
await blackboard.solve_problem(problem)
if __name__ == "__main__":
asyncio.run(main()) |
Beta Was this translation helpful? Give feedback.
-
Lets check out this ControlPanel mechanism for heterogeneous agents import asyncio
from typing import Dict, List, Any, Callable, Optional
from enum import Enum, auto
import uuid
import random
from pydantic import BaseModel, Field, validator
class TaskPriority(Enum):
LOW = auto()
MEDIUM = auto()
HIGH = auto()
CRITICAL = auto()
class TaskModel(BaseModel):
"""
Represents a task with detailed metadata and requirements.
"""
task_id: str = Field(default_factory=lambda: str(uuid.uuid4()))
task_type: str
description: Optional[str] = None
required_skills: List[str] = Field(default_factory=list)
priority: TaskPriority = TaskPriority.MEDIUM
metadata: Dict[str, Any] = Field(default_factory=dict)
@validator('required_skills')
def validate_skills(cls, skills):
"""
Optional custom validation for skills.
"""
if not skills:
print("Warning: No skills specified for the task")
return skills
class AgentCapabilities(BaseModel):
"""
Represents the capabilities and current state of an agent with Pydantic.
"""
name: str
skills: List[str] = Field(default_factory=list)
max_concurrent_tasks: int = 5
current_load: int = 0
performance_score: float = Field(default=1.0, ge=0.0, le=1.0)
specialization_factor: Dict[str, float] = Field(default_factory=dict)
def can_handle_task(self, task_skills: List[str]) -> bool:
"""
Check if the agent has the necessary skills to handle the task.
"""
return any(skill in self.skills for skill in task_skills)
def is_available(self) -> bool:
"""
Determine if the agent can take on more tasks.
"""
return self.current_load < self.max_concurrent_tasks
class Config:
"""
Pydantic model configuration.
"""
validate_assignment = True # Enable validation on attribute assignment
extra = 'forbid' # Prevent arbitrary attribute creation
class AdvancedControlPlane:
def __init__(self):
# Registry of agents with their capabilities
self.agents: Dict[str, AgentCapabilities] = {}
# Task queues with priority
self.task_queue: asyncio.PriorityQueue = asyncio.PriorityQueue()
# Task tracking
self.task_registry: Dict[str, TaskModel] = {}
# Per-agent message queues
self.agent_queues: Dict[str, asyncio.Queue] = {}
def register_agent(self, agent_capabilities: AgentCapabilities):
"""
Register a new agent with specific capabilities.
"""
self.agents[agent_capabilities.name] = agent_capabilities
self.agent_queues[agent_capabilities.name] = asyncio.Queue()
print(f"Registered agent: {agent_capabilities.name}")
print(f"Skills: {agent_capabilities.skills}")
def calculate_task_score(self, task: TaskModel, agent: AgentCapabilities) -> float:
"""
Calculate a comprehensive score for task-agent matching.
Scoring considers:
1. Skill match
2. Current agent load
3. Agent's performance history
4. Task-specific specialization
"""
# Skill match score
skill_match = sum(
agent.specialization_factor.get(skill, 1.0)
for skill in task.required_skills
if skill in agent.skills
)
# Load penalty
load_factor = 1 / (agent.current_load + 1)
# Performance bonus
performance_bonus = agent.performance_score
# Combine factors
total_score = skill_match * load_factor * performance_bonus
return total_score
async def intelligent_task_assignment(self, task: TaskModel) -> Optional[str]:
"""
Intelligently assign a task to the most suitable agent.
"""
# Find available agents that can handle the task
candidate_agents = [
agent_name for agent_name, agent in self.agents.items()
if agent.can_handle_task(task.required_skills)
and agent.is_available()
]
if not candidate_agents:
print("No available agents to handle the task.")
return None
# Score each candidate agent
agent_scores = {
agent_name: self.calculate_task_score(task, self.agents[agent_name])
for agent_name in candidate_agents
}
# Select the agent with the highest score
best_agent = max(agent_scores, key=agent_scores.get)
# Update agent's current load
self.agents[best_agent].current_load += 1
return best_agent
async def add_task(self, task_data: Dict[str, Any]):
"""
Add a new task to the control plane.
"""
# Create a validated task model
task = TaskModel(**task_data)
# Track the task
self.task_registry[task.task_id] = task
# Add to priority queue
await self.task_queue.put((task.priority.value, task))
print(f"Task {task.task_id} added with priority {task.priority.name}")
async def process_tasks(self):
"""
Continuously process tasks from the priority queue.
"""
while True:
# Get next task by priority
_, task = await self.task_queue.get()
# Intelligently assign the task
assigned_agent = await self.intelligent_task_assignment(task)
if assigned_agent:
# Route task to the assigned agent's queue
await self.agent_queues[assigned_agent].put(task)
print(f"Task {task['task_id']} assigned to {assigned_agent}")
async def run_agent(self, agent_name: str, handler: Callable):
"""
Run an agent's task processing loop.
"""
agent_queue = self.agent_queues[agent_name]
while True:
# Wait for and process tasks
task = await agent_queue.get()
try:
print(f"Agent {agent_name} processing task: {task['task_id']}")
await handler(task)
# Simulate performance tracking
self.agents[agent_name].performance_score = random.uniform(0.8, 1.0)
except Exception as e:
print(f"Error in agent {agent_name}: {e}")
finally:
# Decrease agent load
self.agents[agent_name].current_load -= 1
async def start_agents(self):
"""
Start all registered agents.
"""
for agent_name, agent in self.agents.items():
asyncio.create_task(
self.run_agent(agent_name, self.create_agent_handler(agent_name))
)
def create_agent_handler(self, agent_name: str) -> Callable:
"""
Create a dynamic handler for each agent.
"""
async def agent_handler(task: Dict[str, Any]):
# Simulate task processing with slight variations
await asyncio.sleep(random.uniform(0.5, 2.0))
print(f"Agent {agent_name} completed task {task['task_id']}")
return agent_handler
# Example Usage
async def main():
# Create the control plane
control_plane = AdvancedControlPlane()
# Register heterogeneous agents with different capabilities
control_plane.register_agent(AgentCapabilities(
name="technical_support",
skills=["debugging", "system_analysis", "network_troubleshooting"],
specialization_factor={
"debugging": 1.5,
"system_analysis": 1.3
}
))
control_plane.register_agent(AgentCapabilities(
name="billing_support",
skills=["invoice_processing", "payment_analysis", "customer_billing"],
specialization_factor={
"invoice_processing": 1.4,
"payment_analysis": 1.2
}
))
control_plane.register_agent(AgentCapabilities(
name="general_support",
skills=["customer_communication", "basic_troubleshooting"],
max_concurrent_tasks=3
))
# Start agent processing
asyncio.create_task(control_plane.start_agents())
asyncio.create_task(control_plane.process_tasks())
await control_plane.add_task({
"task_type": "billing_inquiry",
"required_skills": ["invoice_processing"],
"description": "Complex billing reconciliation",
"priority": TaskPriority.MEDIUM
})
await control_plane.add_task({
"task_type": "general_query",
"required_skills": ["customer_communication"],
"description": "Customer follow-up",
"priority": TaskPriority.LOW
})
await control_plane.add_task({
"task_type": "technical_issue",
"required_skills": ["debugging", "system_analysis"],
"description": "Server performance investigation",
"priority": TaskPriority.HIGH
})
# Main execution
if __name__ == "__main__":
asyncio.run(main()) |
Beta Was this translation helpful? Give feedback.
-
Can we also analyze this pattern "Contract Net Protocol" import asyncio
import random
from enum import Enum
from typing import List, Optional, Dict, Tuple
from pydantic import BaseModel, Field, validator, ConfigDict
class TaskStatus(str, Enum):
OPEN = "open"
IN_PROGRESS = "in_progress"
COMPLETED = "completed"
FAILED = "failed"
class Task(BaseModel):
"""
Represents a task to be allocated in the Contract Net Protocol
"""
id: str = Field(default_factory=lambda: f"task_{random.randint(1000, 9999)}")
description: str
complexity: float = Field(ge=0.0, le=1.0)
reward: float = Field(gt=0)
status: TaskStatus = TaskStatus.OPEN
assigned_agent: Optional[str] = None
result: Optional[Dict] = None
model_config = ConfigDict(
extra='forbid', # Prevent additional fields
frozen=False, # Allow modification after creation
validate_assignment=True # Validate on attribute change
)
@validator('complexity')
def validate_complexity(cls, v):
"""
Ensure complexity is between 0 and 1
"""
if not (0 <= v <= 1):
raise ValueError("Complexity must be between 0 and 1")
return v
class Agent(BaseModel):
"""
Represents an agent with specializations and workload constraints
"""
name: str
specializations: List[str]
max_load: float = Field(default=1.0, ge=0, le=1.0)
# Runtime attributes (not validated by Pydantic)
current_load: float = 0.0
completed_tasks: List[Task] = []
failed_tasks: List[Task] = []
model_config = ConfigDict(
arbitrary_types_allowed=True,
validate_assignment=True
)
async def evaluate_task(self, task: Task) -> Optional[float]:
"""
Evaluate a task's suitability and potential bid
Args:
task (Task): Task to be evaluated
Returns:
Optional bid value (lower is better)
"""
# Check specialization match
if not any(spec in self.specializations for spec in task.description.split(',')):
return None
# Check remaining capacity
remaining_capacity = self.max_load - self.current_load
# Reject if insufficient capacity
if task.complexity > remaining_capacity:
return None
# Calculate bid (lower is better)
bid = (task.complexity / remaining_capacity) / task.reward
return bid
async def perform_task(self, task: Task) -> Dict:
"""
Simulate task execution
Args:
task (Task): Task to be performed
Returns:
Dict: Task execution results
"""
# Simulate task complexity and potential failure
await asyncio.sleep(task.complexity)
# Random chance of task failure
if random.random() < 0.1: # 10% failure rate
return {"status": "failed", "reason": "Unexpected complexity"}
return {
"status": "completed",
"details": f"Task {task.id} completed by {self.name}",
"reward": task.reward
}
class ContractNetManager(BaseModel):
"""
Manages task allocation using Contract Net Protocol
"""
agents: List[Agent] = []
tasks: List[Task] = []
task_history: List[Task] = []
model_config = ConfigDict(
arbitrary_types_allowed=True,
validate_assignment=True
)
def register_agent(self, agent: Agent):
"""
Register an agent in the contract net
Args:
agent (Agent): Agent to be registered
"""
self.agents.append(agent)
def create_task(self, description: str, complexity: float, reward: float) -> Task:
"""
Create a new task for allocation
Args:
description (str): Task description and required specializations
complexity (float): Task complexity
reward (float): Task reward
Returns:
Task: Created task
"""
task = Task(
description=description,
complexity=complexity,
reward=reward
)
self.tasks.append(task)
return task
async def allocate_task(self, task: Task) -> Optional[Tuple[Agent, Dict]]:
"""
Allocate a task using Contract Net Protocol
Args:
task (Task): Task to be allocated
Returns:
Optional tuple of (assigned_agent, task_result)
"""
print(f"\nAllocating Task: {task.description}")
# Call for proposals
bids = []
for agent in self.agents:
bid = await agent.evaluate_task(task)
if bid is not None:
bids.append((agent, bid))
# No suitable agents found
if not bids:
print(f"No agents available for task: {task.description}")
return None
# Select agent with lowest bid (best fit)
selected_agent, _ = min(bids, key=lambda x: x[1])
# Assign and execute task
task.assigned_agent = selected_agent.name
task.status = TaskStatus.IN_PROGRESS
try:
result = await selected_agent.perform_task(task)
if result['status'] == 'completed':
task.status = TaskStatus.COMPLETED
task.result = result
selected_agent.completed_tasks.append(task)
print(f"Task {task.id} completed by {selected_agent.name}")
else:
task.status = TaskStatus.FAILED
selected_agent.failed_tasks.append(task)
print(f"Task {task.id} failed for {selected_agent.name}")
return (selected_agent, result)
except Exception as e:
print(f"Task allocation error: {e}")
task.status = TaskStatus.FAILED
return None
async def run_task_allocation(self):
"""
Run task allocation for all tasks
"""
task_allocation_tasks = [
self.allocate_task(task) for task in self.tasks
]
await asyncio.gather(*task_allocation_tasks)
# Print allocation summary
self.print_allocation_summary()
def print_allocation_summary(self):
"""
Print summary of task allocations
"""
print("\n--- Task Allocation Summary ---")
for task in self.tasks:
print(f"Task {task.id}: {task.description}")
print(f" Status: {task.status}")
print(f" Assigned Agent: {task.assigned_agent or 'Unassigned'}")
print(f" Result: {task.result or 'N/A'}\n")
async def main():
# Create Contract Net Manager
contract_net = ContractNetManager()
# Create specialized agents with Pydantic validation
data_agent = Agent(
name="DataAnalyst",
specializations=["data_processing", "analytics"],
max_load=0.7
)
ml_agent = Agent(
name="MLSpecialist",
specializations=["machine_learning", "model_training"],
max_load=0.5
)
cloud_agent = Agent(
name="CloudEngineer",
specializations=["cloud_deployment", "infrastructure"],
max_load=0.6
)
# Register agents
contract_net.register_agent(data_agent)
contract_net.register_agent(ml_agent)
contract_net.register_agent(cloud_agent)
# Create diverse tasks
tasks = [
contract_net.create_task("data_processing", complexity=0.3, reward=100),
contract_net.create_task("machine_learning,model_training", complexity=0.5, reward=250),
contract_net.create_task("cloud_deployment", complexity=0.4, reward=150),
contract_net.create_task("analytics", complexity=0.2, reward=80)
]
# Run task allocation
await contract_net.run_task_allocation()
if __name__ == "__main__":
asyncio.run(main()) |
Beta Was this translation helpful? Give feedback.
-
more on control plane in the context of multiagent strategies: This implementation includes:
Directory Structure
1. Agent Design
|
Beta Was this translation helpful? Give feedback.
-
For Blackboard pattern here's a proposed directory structure:
Base BlackboardAgent Class from typing import Any, Dict, List, Optional
from core.knowledge_state import KnowledgeState
class BaseAgent:
def __init__(self, name: str, capabilities: List[str]):
"""
Initialize an agent with specific capabilities
Args:
name (str): Name of the agent
capabilities (List[str]): List of problem-solving capabilities
"""
self.name = name
self.capabilities = capabilities
async def process(self, blackboard: 'Blackboard', problem: Dict[str, Any]) -> Optional[Dict[str, Any]]:
"""
Process a problem based on the agent's capabilities
Args:
blackboard (Blackboard): The shared blackboard
problem (Dict[str, Any]): Problem to be solved
Returns:
Optional solution contribution
"""
raise NotImplementedError("Subclasses must implement processing method") Knowledge State Enum and BlackboardData from dataclasses import dataclass, field
from typing import Any, Optional
from enum import Enum, auto
class KnowledgeState(Enum):
INCOMPLETE = auto()
PARTIAL = auto()
COMPLETE = auto()
@dataclass
class BlackboardData:
"""
Represents a piece of knowledge on the blackboard
"""
content: Any
state: KnowledgeState = field(default=KnowledgeState.INCOMPLETE)
contributor: Optional[str] = None
confidence_level: float = 0.0 Blackboard Core Implementation import asyncio
from typing import Any, Dict, List, Optional
from core.knowledge_state import KnowledgeState, BlackboardData
from agents.base_agent import BaseAgent
class Blackboard:
def __init__(self):
"""
Initialize the shared blackboard
"""
self._knowledge: Dict[str, BlackboardData] = {}
self._agents: List[BaseAgent] = []
self._solution_lock = asyncio.Lock()
self._problem_state: KnowledgeState = KnowledgeState.INCOMPLETE
def register_agent(self, agent: BaseAgent):
"""
Register an agent to work on the blackboard
Args:
agent (BaseAgent): Agent to be registered
"""
self._agents.append(agent)
def add_knowledge(self, key: str, content: Any, contributor: str):
"""
Add or update knowledge on the blackboard
Args:
key (str): Unique identifier for the knowledge
content (Any): Knowledge content
contributor (str): Name of the agent contributing the knowledge
"""
async with self._solution_lock:
existing = self._knowledge.get(key)
confidence = self._calculate_confidence(existing, content)
new_data = BlackboardData(
content=content,
contributor=contributor,
confidence_level=confidence,
state=self._determine_state(content)
)
self._knowledge[key] = new_data
self._update_problem_state()
def _calculate_confidence(self, existing: Optional[BlackboardData], new_content: Any) -> float:
"""
Calculate confidence level for new knowledge
Args:
existing (Optional[BlackboardData]): Existing knowledge
new_content (Any): New content to be added
Returns:
float: Confidence level
"""
if not existing:
return 0.5 # Default confidence for first contribution
# Simple confidence calculation logic
return min(existing.confidence_level + 0.2, 1.0)
def _determine_state(self, content: Any) -> KnowledgeState:
"""
Determine the knowledge state based on content
Args:
content (Any): Content to evaluate
Returns:
KnowledgeState: State of the knowledge
"""
if content is None:
return KnowledgeState.INCOMPLETE
elif isinstance(content, dict) and not content:
return KnowledgeState.INCOMPLETE
elif isinstance(content, list) and len(content) < 2:
return KnowledgeState.PARTIAL
return KnowledgeState.COMPLETE
def _update_problem_state(self):
"""
Update the overall problem-solving state
"""
states = [data.state for data in self._knowledge.values()]
if all(state == KnowledgeState.COMPLETE for state in states):
self._problem_state = KnowledgeState.COMPLETE
elif any(state == KnowledgeState.COMPLETE for state in states):
self._problem_state = KnowledgeState.PARTIAL
else:
self._problem_state = KnowledgeState.INCOMPLETE
async def solve_problem(self, problem: Dict[str, Any]):
"""
Coordinate agents to solve a problem
Args:
problem (Dict[str, Any]): Problem to be solved
"""
print(f"Starting problem-solving process: {problem}")
# Distribute problem to agents
tasks = [
asyncio.create_task(agent.process(self, problem))
for agent in self._agents
]
# Wait for all agents to contribute
await asyncio.gather(*tasks)
# Final solution assessment
if self._problem_state == KnowledgeState.COMPLETE:
print("Problem solved successfully!")
self._print_solution()
else:
print("Problem solving incomplete.")
def _print_solution(self):
"""
Print the final solution from the blackboard
"""
print("\n--- Final Blackboard Solution ---")
for key, data in self._knowledge.items():
print(f"{key}: {data.content} (Contributor: {data.contributor}, "
f"Confidence: {data.confidence_level:.2f})") Data Collection Agent import asyncio
from typing import Any, Dict, Optional
from agents.base_agent import BaseAgent
from core.blackboard import Blackboard
class DataCollectionAgent(BaseAgent):
async def process(self, blackboard: Blackboard, problem: Dict[str, Any]) -> Optional[Dict[str, Any]]:
"""
Collect initial data for the problem
"""
await asyncio.sleep(1) # Simulate data collection
initial_data = {
"raw_data": [1, 2, 3, 4, 5],
"metadata": {"source": "sensors"}
}
for key, value in initial_data.items():
blackboard.add_knowledge(key, value, self.name)
return initial_data Data Analysis Agent import asyncio
from typing import Any, Dict, Optional
from agents.base_agent import BaseAgent
from core.blackboard import Blackboard
class DataAnalysisAgent(BaseAgent):
async def process(self, blackboard: Blackboard, problem: Dict[str, Any]) -> Optional[Dict[str, Any]]:
"""
Analyze and process collected data
"""
await asyncio.sleep(1.5) # Simulate analysis
raw_data = blackboard._knowledge.get('raw_data')
if raw_data:
analysis = {
"statistics": {
"mean": sum(raw_data.content) / len(raw_data.content),
"variance": sum((x - (sum(raw_data.content) / len(raw_data.content))) ** 2 for x in raw_data.content) / len(raw_data.content)
}
}
blackboard.add_knowledge('data_analysis', analysis, self.name)
return analysis Solution Agent import asyncio
from typing import Any, Dict, Optional
from agents.base_agent import BaseAgent
from core.blackboard import Blackboard
class SolutionAgent(BaseAgent):
async def process(self, blackboard: Blackboard, problem: Dict[str, Any]) -> Optional[Dict[str, Any]]:
"""
Synthesize final solution
"""
await asyncio.sleep(2) # Simulate solution synthesis
analysis = blackboard._knowledge.get('data_analysis')
if analysis:
solution = {
"final_solution": {
"insights": "Problem solved based on collected and analyzed data",
"key_metrics": analysis.content['statistics']
}
}
blackboard.add_knowledge('solution', solution, self.name)
return solution Main Execution Script import asyncio
from core.blackboard import Blackboard
from agents.data_collection_agent import DataCollectionAgent
from agents.data_analysis_agent import DataAnalysisAgent
from agents.solution_agent import SolutionAgent
async def main():
# Create blackboard
blackboard = Blackboard()
# Create and register agents
data_collector = DataCollectionAgent("Data Collector", ["data_gathering"])
data_analyzer = DataAnalysisAgent("Data Analyzer", ["statistical_analysis"])
solution_agent = SolutionAgent("Solution Synthesizer", ["solution_generation"])
blackboard.register_agent(data_collector)
blackboard.register_agent(data_analyzer)
blackboard.register_agent(solution_agent)
# Define a sample problem
problem = {
"type": "data_analysis",
"description": "Analyze sensor data and generate insights"
}
# Solve the problem
await blackboard.solve_problem(problem)
if __name__ == "__main__":
asyncio.run(main()) |
Beta Was this translation helpful? Give feedback.
-
For a multi-agent framework, especially for heterogeneous agents, efficient communication is critical. Here are some patterns and mechanisms commonly used: 1. Publish-Subscribe Pattern
2. Direct Messaging
3. Blackboard Pattern
4. Service-Oriented Architecture (SOA)
5. Agent Communication Languages (ACLs)
6. Shared Memory Systems
7. Event-Driven Communication
8. Multi-Protocol Communication
Factors to Consider:
Recommendations for Your Framework
|
Beta Was this translation helpful? Give feedback.
-
Real-Time Systems CategoryTo dive deeper into Real-Time Systems, let’s explore Direct Messaging and Shared Memory Systems with code examples. These mechanisms are suitable for applications like robotics, gaming, and industrial automation where low-latency, high-performance communication is critical. 1. Direct MessagingDirect messaging enables agents to communicate in a point-to-point manner with low latency. Below is an example using ZeroMQ, a high-performance messaging library: Implementation: Direct Messaging with ZeroMQAgent 1 (Sender)import zmq
import time
def sender():
context = zmq.Context()
socket = context.socket(zmq.PUSH)
socket.bind("tcp://*:5555") # Bind to port 5555
for i in range(10):
message = f"Message {i}"
print(f"Sending: {message}")
socket.send_string(message)
time.sleep(1) # Simulating periodic updates
if __name__ == "__main__":
sender() Agent 2 (Receiver)def receiver():
context = zmq.Context()
socket = context.socket(zmq.PULL)
socket.connect("tcp://localhost:5555") # Connect to the sender
while True:
message = socket.recv_string()
print(f"Received: {message}")
if __name__ == "__main__":
receiver() Key Features:
2. Shared Memory SystemsShared memory systems allow agents to access common memory regions for communication. This is common in multi-threaded applications or local processes. Below is an example using Python’s multiprocessing module. Implementation: Shared Memory with PythonShared Memory Setupfrom multiprocessing import Process, shared_memory
import numpy as np
import time
def writer():
shm = shared_memory.SharedMemory(name="shared_array")
array = np.ndarray((10,), dtype=np.int32, buffer=shm.buf)
for i in range(10):
array[i] = i
print(f"Writer: Wrote {i}")
time.sleep(1) # Simulating real-time updates
def reader():
shm = shared_memory.SharedMemory(name="shared_array")
array = np.ndarray((10,), dtype=np.int32, buffer=shm.buf)
while True:
print(f"Reader: Current data {array.tolist()}")
time.sleep(1)
if __name__ == "__main__":
# Create shared memory
shm = shared_memory.SharedMemory(create=True, size=10 * np.dtype(np.int32).itemsize)
array = np.ndarray((10,), dtype=np.int32, buffer=shm.buf)
array.fill(-1) # Initialize array with default values
# Start writer and reader processes
p1 = Process(target=writer)
p2 = Process(target=reader)
p1.start()
p2.start()
p1.join()
p2.join()
shm.close()
shm.unlink() # Cleanup shared memory Key Features:
Comparison
|
Beta Was this translation helpful? Give feedback.
-
Collaborative Systems Category:Collaborative systems rely on efficient communication and shared understanding among agents to achieve a common goal. Below is an in-depth explanation of the Blackboard Pattern, Agent Communication Languages (ACLs), and the Publish-Subscribe Pattern within this context. 1. Blackboard PatternThe Blackboard Pattern is inspired by real-world brainstorming sessions where participants write ideas on a shared board visible to everyone. This mechanism is widely used for collaborative problem-solving. Key Characteristics:
Strengths:
Weaknesses:
Use Cases:
2. Agent Communication Languages (ACLs)ACLs provide a structured, semantic way for agents to communicate. Examples include FIPA-ACL and KQML (Knowledge Query and Manipulation Language). Key Characteristics:
Strengths:
Weaknesses:
Use Cases:
3. Publish-Subscribe PatternThe Publish-Subscribe Pattern is a message-driven mechanism where agents (subscribers) register interest in specific topics, and publishers send relevant updates. Key Characteristics:
Strengths:
Weaknesses:
Use Cases:
Comparative Analysis
Conclusion
|
Beta Was this translation helpful? Give feedback.
-
Proposed Directory Structure for the Multi-Agent FrameworkHere’s a directory structure to organize your framework effectively, aligning with the goals of modularity, reusability, and extensibility:
Code Overview for Each Component1.
|
Beta Was this translation helpful? Give feedback.
-
Here’s a simplified directory structure for Contract Net Manager communication pattern. It includes only the necessary files based on the functionality described in the code.
File Details
|
Beta Was this translation helpful? Give feedback.
-
Here is the directory structure for PubSub Broker System and how the files will be organized: Directory Structure
File Contents
|
Beta Was this translation helpful? Give feedback.
-
Service-Oriented Architecture (SOA)Service-Oriented Architecture (SOA) in the context of a multi-agent framework, along with a code implementation to illustrate the concept. import asyncio
import json
from typing import Dict, Any
from fastapi import FastAPI, HTTPException
import httpx
import uvicorn
class Agent:
def __init__(self, name: str, base_url: str):
self.name = name
self.base_url = base_url
self.services: Dict[str, callable] = {}
self.registry_url = "http://localhost:8000/register"
self.known_agents: Dict[str, str] = {}
def expose_service(self, service_name: str, handler: callable):
"""
Expose a service that can be called by other agents.
:param service_name: Unique name of the service
:param handler: Function that implements the service logic
"""
self.services[service_name] = handler
async def register_with_registry(self):
"""
Register this agent's services with the central registry.
"""
services_list = list(self.services.keys())
async with httpx.AsyncClient() as client:
try:
response = await client.post(self.registry_url, json={
"agent_name": self.name,
"base_url": self.base_url,
"services": services_list
})
response.raise_for_status()
except httpx.RequestError as e:
print(f"Error registering with registry: {e}")
async def discover_agents(self):
"""
Discover other agents and their available services.
"""
async with httpx.AsyncClient() as client:
try:
response = await client.get(self.registry_url + "/agents")
response.raise_for_status()
self.known_agents = response.json()
except httpx.RequestError as e:
print(f"Error discovering agents: {e}")
async def call_service(self, agent_name: str, service_name: str, payload: Dict[str, Any]):
"""
Call a service on another agent.
:param agent_name: Name of the target agent
:param service_name: Name of the service to call
:param payload: Data to send with the service call
:return: Response from the service
"""
if agent_name not in self.known_agents:
await self.discover_agents()
if agent_name not in self.known_agents:
raise HTTPException(status_code=404, detail=f"Agent {agent_name} not found")
agent_url = self.known_agents[agent_name]
async with httpx.AsyncClient() as client:
try:
response = await client.post(
f"{agent_url}/service/{service_name}",
json=payload
)
response.raise_for_status()
return response.json()
except httpx.RequestError as e:
print(f"Error calling service: {e}")
raise HTTPException(status_code=500, detail=str(e))
def create_agent_app(agent: Agent):
"""
Create a FastAPI application for an agent.
:param agent: Agent instance to create app for
:return: FastAPI application
"""
app = FastAPI(title=f"{agent.name} Agent Service")
@app.post("/service/{service_name}")
async def handle_service(service_name: str, payload: Dict[str, Any]):
if service_name not in agent.services:
raise HTTPException(status_code=404, detail="Service not found")
return await agent.services[service_name](payload)
@app.on_event("startup")
async def startup_event():
await agent.register_with_registry()
return app
# Central Registry Service
registry_app = FastAPI(title="Multi-Agent Registry")
registered_agents: Dict[str, str] = {}
@registry_app.post("/register")
async def register_agent(agent_data: Dict[str, Any]):
registered_agents[agent_data['agent_name']] = agent_data['base_url']
return {"status": "success"}
@registry_app.get("/agents")
async def get_registered_agents():
return registered_agents
# Example Usage Demonstration
async def data_processing_service(payload: Dict[str, Any]):
"""
Example service that processes data.
"""
data = payload.get('data', [])
processed_data = [x * 2 for x in data]
return {"processed_data": processed_data}
async def machine_learning_service(payload: Dict[str, Any]):
"""
Example service that simulates a machine learning task.
"""
input_data = payload.get('input', [])
prediction = sum(input_data) / len(input_data) if input_data else 0
return {"prediction": prediction}
async def main():
# Create agents
data_agent = Agent("DataProcessingAgent", "http://localhost:8001")
ml_agent = Agent("MachineLearningAgent", "http://localhost:8002")
# Expose services
data_agent.expose_service("process_data", data_processing_service)
ml_agent.expose_service("predict", machine_learning_service)
# Run the applications
config_registry = uvicorn.Config(registry_app, host="localhost", port=8000)
config_data_agent = uvicorn.Config(create_agent_app(data_agent), host="localhost", port=8001)
config_ml_agent = uvicorn.Config(create_agent_app(ml_agent), host="localhost", port=8002)
server_registry = uvicorn.Server(config_registry)
server_data_agent = uvicorn.Server(config_data_agent)
server_ml_agent = uvicorn.Server(config_ml_agent)
await asyncio.gather(
server_registry.serve(),
server_data_agent.serve(),
server_ml_agent.serve()
)
if __name__ == "__main__":
asyncio.run(main()) Let me break down the Service-Oriented Architecture (SOA) for Multi-Agent Systems: Key Concepts of SOA in Multi-Agent Systems
Implementation DetailsThe code demonstrates a SOA multi-agent framework with:
Advantages Demonstrated
Technologies Used
Potential Real-World Applications
Running the FrameworkTo use this framework, you would:
The code provides a complete, runnable example of how SOA principles can be implemented in a multi-agent system. |
Beta Was this translation helpful? Give feedback.
-
Discussion for Multiagent (heterogeneous) Strategies
Beta Was this translation helpful? Give feedback.
All reactions