-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathexample.py
executable file
·273 lines (226 loc) · 10.1 KB
/
example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
#!/usr/bin/env python
import numpy as np
import front_detection as fd
from front_detection import catherine
from scipy.ndimage import label, generate_binary_structure
import glob
from netCDF4 import Dataset
import matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemap
import datetime as dt
import plotter
year = 2007
model_name = 'merra2'
hemis = 'NH'
folder_format = '/localdrive/drive10/jj/datacycs/out_nc/{0}/{1}/{2}/'
model_folder = '/mnt/drive5/merra2/six_hrly/'
print('Debug: Reading in data ...', end='')
slv_file = '/mnt/drive5/merra2/six_hrly/MERRA_%d_slv.nc'%(year)
slv_2_file = '/mnt/drive5/merra2/six_hrly/MERRA_%d_slv_2.nc'%(year)
slv_id = Dataset(slv_file, 'r')
slv_id.set_auto_mask(False)
my_lat = slv_id.variables['lat'][:]
my_lon = slv_id.variables['lon'][:]
my_slp = slv_id.variables['slp'][:]/100.
my_time = slv_id.variables['time'][:]
my_date = np.asarray([dt.datetime.fromordinal(int(i_time - 366.)) + dt.timedelta(hours=(i_time%1)*24.) for i_time in my_time])
my_lon, my_lat = np.meshgrid(my_lon, my_lat)
slv_id.close()
# loading in merra2 inst6_3d_ana_Np data
ncid = Dataset('/localdrive/drive10/merra2/inst6_3d_ana_Np/MERRA2_300.inst6_3d_ana_Np.20070101.nc4', 'r')
ncid.set_auto_mask(False)
in_lon = ncid.variables['lon'][:]
in_lat = ncid.variables['lat'][:]
in_lev = ncid.variables['lev'][:]
in_time = np.asarray(ncid.variables['time'][:], dtype=float)
in_slp = ncid.variables['SLP']
T = ncid.variables['T']
U = ncid.variables['U']
V = ncid.variables['V']
geoH = ncid.variables['H']
# creating the cdt grid
lon, lat = np.meshgrid(in_lon, in_lat)
lev850 = np.where(in_lev == 850)[0][0]
print(' Completed!')
for t_step in range(1, in_time.shape[0]):
# creating a datetime variable for the current time step
date = dt.datetime(2007, 1, 1) + dt.timedelta(minutes=in_time[t_step])
# getting catherinees fronts for the time step
cath_wf, cath_cf, cath_slp, cath_lat, cath_lon = catherine.fronts_for_date(lat, lon, date.year, date.month, date.day, date.hour)
llat = np.nanmin(cath_lat)
ulat = np.nanmax(cath_lat)
llon = np.nanmin(cath_lon)
ulon = np.nanmax(cath_lon)
# getting the different slp values for MERRA2
my_t_slp = np.squeeze(my_slp[(my_date == date), :, :])
slp = in_slp[t_step, :, :]/100.
# plt.figure(figsize=(3,9))
# plt.subplot(311)
# m = Basemap(projection='cyl', urcrnrlat=ulat, llcrnrlat=llat, urcrnrlon=ulon, llcrnrlon=llon)
# m.contourf(lon, lat, slp, levels=np.arange(960, 1100, 10), cmap='jet')
# m.drawcoastlines()
# m.drawparallels(np.arange(-90, 90, 30), labels=[False, True, False, False])
# m.drawmeridians(np.arange(-180, 180, 30), labels=[False, False, False, True])
# m.colorbar()
# plt.title('INST6_3d_ANA_NP')
# plt.subplot(312)
# m = Basemap(projection='cyl', urcrnrlat=ulat, llcrnrlat=llat, urcrnrlon=ulon, llcrnrlon=llon)
# m.contourf(my_lon, my_lat, my_t_slp, levels=np.arange(960, 1100, 10), cmap='jet')
# m.colorbar()
# m.drawcoastlines()
# m.drawparallels(np.arange(-90, 90, 30), labels=[False, True, False, False])
# m.drawmeridians(np.arange(-180, 180, 30), labels=[False, False, False, True])
# plt.title('MY 6H averages SLP')
# plt.subplot(313)
# m = Basemap(projection='cyl', urcrnrlat=ulat, llcrnrlat=llat, urcrnrlon=ulon, llcrnrlon=llon)
# m.contourf(cath_lon, cath_lat, cath_slp, levels=np.arange(960, 1100, 10), cmap='jet')
# m.colorbar()
# m.drawcoastlines()
# m.drawparallels(np.arange(-90, 90, 30), labels=[False, True, False, False])
# m.drawmeridians(np.arange(-180, 180, 30), labels=[False, False, False, True])
# plt.title('CATH SLP')
# plt.tight_layout()
# plt.savefig('./images/slp_compare.png', dpi=300.)
# plt.close('all')
# extracting the current and previous time step U & V wind speeds for the fronts
# have to smooth the input data, catherine smooths it 10 times, so do I
# weighting the center point 4x as heavier
prev_u850 = fd.smooth_grid(U[t_step-1, lev850, :, :], iter=10, center_weight=4)
u850 = fd.smooth_grid(U[t_step, lev850, :, :], iter=10, center_weight=4)
prev_v850 = fd.smooth_grid(V[t_step-1, lev850, :, :], iter=10, center_weight=4)
v850 = fd.smooth_grid(V[t_step, lev850, :, :], iter=10, center_weight=4)
# getting the temperature at 850 hPa
t850 = T[t_step, lev850, :, :]
t850[t850 > 1000] = np.nan
theta850 = fd.theta_from_temp_pres(t850, 850)
theta850 = fd.smooth_grid(theta850, iter=10, center_weight=4)
# getting the 1km values of temperature
# the code below is a work around to speed up the code, isntead of running a nest for loop
# getting the height values from MERRA2
H = geoH[t_step, :, :, :]/9.8
H1km_diff = np.abs(H - 1000.) # getting the difference between Height and 1km, to get the min value
min_val = np.broadcast_to(np.nanmin(H1km_diff, axis=0), (H.shape[0], H.shape[1], H.shape[2])) # getting a min_val array to mask out the main array to find the closest minimum value
idx = (H1km_diff == min_val) # getting the index mask of all the minimum values
T_3d = np.ma.masked_array(T[t_step, :, :, :], mask=~idx, fill_value=np.nan) # creating a temperature 3d array
t1km = np.nanmin(T_3d.filled(),axis=0) # getting the 1km value by finding the minimum value
pres = np.repeat(in_lev[:, np.newaxis], H.shape[1], axis=-1) # creating the pressure level into 3d array
pres = np.repeat(pres[:, :, np.newaxis], H.shape[2], axis=-1) # creating the pressure level into 3d array
pres = np.ma.masked_array(pres, mask=~idx, fill_value=np.nan) # masking out pressure values using minimum 1km mask
p1km = np.nanmin(pres, axis=0) # getting the pressure at 1km
theta1km = fd.theta_from_temp_pres(t1km, p1km) # computing the theta value at 1km
theta1km = fd.smooth_grid(theta1km, iter=10, center_weight=4) # smoothing out the theta value
# computing the simmonds fronts
f_sim = fd.simmonds_et_al_2012(lat, lon, prev_u850, prev_v850, u850, v850)
# computing the hewson fronts using 1km temperature values, and U & V wind speeds at 850
# f_hew = fd.hewson_1998(lat, lon, theta1km, u850, v850)
f_hew = fd.hewson_1998(lat, lon, theta850, u850, v850)
# zc_6, zc_7 = fd.hewson_1998(lat, lon, theta850, u850, v850)
wf_hew = f_hew['wf']
cf_hew = f_hew['cf']
cf_sim = f_sim['cf']
wf = np.copy(wf_hew)
# cf = np.double((cf_hew + cf_sim) > 0)
cf = np.copy(cf_sim)
## Cleaning up the fronts
s = generate_binary_structure(2,2)
w_label, w_num = label(wf, structure=s)
c_label, c_num = label(cf, structure=s)
# keeping only clusters with 3 or more
for i_w in range(1, w_num+1):
ind = np.argwhere(w_label == i_w)
if (len(ind) < 3):
wf[w_label == i_w] = 0.
# cleaning up the cold fronts and picking only the eastern most point
# cf_old = np.copy(cf)
for i_c in range(1, c_num+1):
x_ind, y_ind = np.where(c_label == i_c)
if (len(x_ind) < 3):
cf[c_label == i_c] = 0.
# cf_old[c_label == i_c] = 0.
continue
# quick scatched up way to keep only eastern most points
# optimize this later
for uni_x in set(x_ind):
y_for_uni_x = y_ind[(x_ind == uni_x)]
remove_y = y_for_uni_x[y_for_uni_x != np.nanmax(y_for_uni_x)]
if (remove_y.size > 0):
for y in remove_y:
cf[uni_x, y] = 0.
llat = 0
ulat = 90
llon = -180
ulon = 0
plt.figure(figsize=(12,12))
fronts = wf*10 + cf*-10
fronts = cf*-10
fronts[~((fronts == 10) | (fronts == -10))] = np.nan
plt.subplot(2,1,1)
m = Basemap(projection='cyl', urcrnrlat=ulat, llcrnrlat=llat, urcrnrlon=ulon, llcrnrlon=llon)
csf = plt.contourf(lon, lat, theta850)
cs = plt.contour(lon, lat, slp, lw=0.5, ls='--', colors='k')
plt.clabel(cs, inline=1., fontsize=10., fmt='%.0f')
pc = m.pcolormesh(lon, lat, fronts, cmap='bwr')
m.colorbar(csf)
m.drawcoastlines(linewidth=0.2)
plt.axhline(y=0., linewidth=1.0, linestyle='--')
plt.title('My Fronts')
plt.subplot(2,1,2)
fronts = cath_wf*10 + cath_cf*-10
fronts = cath_cf*-10
fronts[~((fronts == 10) | (fronts == -10))] = np.nan
m = Basemap(projection='cyl', urcrnrlat=ulat, llcrnrlat=llat, urcrnrlon=ulon, llcrnrlon=llon)
# csf = plt.contourf(cath_lon, cath_lat, cath_slp)
csf = plt.contourf(lon, lat, theta850)
cs = plt.contour(lon, lat, slp, lw=0.5, ls='--', colors='k')
plt.clabel(cs, inline=1., fontsize=10., fmt='%.0f')
pc = m.pcolormesh(lon, lat, fronts, cmap='bwr')
m.colorbar(csf)
m.drawcoastlines(linewidth=0.2)
plt.axhline(y=0., linewidth=1.0, linestyle='--')
plt.title('Catherine Fronts')
plt.savefig('./images/test.png', dpi=300)
plt.show()
break
# plt.savefig('./images/test.png', dpi=300.)
# slv2_id.close()
ncid.close()
'''
### temp codes -- delete later
# code to test slp data
plt.close('all')
llat = np.nanmin(cath_lat)
ulat = np.nanmax(cath_lat)
llon = np.nanmin(cath_lon)
ulon = np.nanmax(cath_lon)
my_ind = (my_date == date)
my_t_slp = np.squeeze(my_slp[my_ind, :, :])
slp = in_slp[t_step, :, :]/100.
plt.figure(figsize=(3,9))
plt.subplot(311)
m = Basemap(projection='cyl', urcrnrlat=ulat, llcrnrlat=llat, urcrnrlon=ulon, llcrnrlon=llon)
m.contourf(lon, lat, slp, levels=np.arange(960, 1100, 10), cmap='jet')
m.drawcoastlines()
m.drawparallels(np.arange(-90, 90, 30), labels=[False, True, False, False])
m.drawmeridians(np.arange(-180, 180, 30), labels=[False, False, False, True])
m.colorbar()
plt.title('INST6_3d_ANA_NP')
plt.subplot(312)
m = Basemap(projection='cyl', urcrnrlat=ulat, llcrnrlat=llat, urcrnrlon=ulon, llcrnrlon=llon)
m.contourf(my_lon, my_lat, my_t_slp, levels=np.arange(960, 1100, 10), cmap='jet')
m.colorbar()
m.drawcoastlines()
m.drawparallels(np.arange(-90, 90, 30), labels=[False, True, False, False])
m.drawmeridians(np.arange(-180, 180, 30), labels=[False, False, False, True])
plt.title('MY 6H averages SLP')
plt.subplot(313)
m = Basemap(projection='cyl', urcrnrlat=ulat, llcrnrlat=llat, urcrnrlon=ulon, llcrnrlon=llon)
m.contourf(cath_lon, cath_lat, cath_slp, levels=np.arange(960, 1100, 10), cmap='jet')
m.colorbar()
m.drawcoastlines()
m.drawparallels(np.arange(-90, 90, 30), labels=[False, True, False, False])
m.drawmeridians(np.arange(-180, 180, 30), labels=[False, False, False, True])
plt.title('CATH SLP')
plt.tight_layout()
plt.savefig('./images/slp_compare.png', dpi=300.)
ncid.close()
'''