US
r doc_date()
library(dplyr)
pdb = src_mysql("pharmacodb", host = "solexadb.cpmth1vkdqqx.us-east-1.rds.amazonaws.com",
user = "deeplearn", password = "deeplearn")
Tables available include:
pdb_t = sapply(db_list_tables(pdb$con), function(tblname) tbl(pdb, tblname),
USE.NAMES = TRUE, simplify = FALSE)
names(pdb_t)
## [1] "ar_internal_metadata" "cell_tissues" "cellosaurus"
## [4] "cells" "datasets" "dose_responses"
## [7] "drug_annots" "drug_targets" "drugs"
## [10] "experiments" "mol_cells" "profiles"
## [13] "schema_migrations" "source_cell_names" "source_drug_names"
## [16] "source_statistics" "source_tissue_names" "sources"
## [19] "targets" "tissues"
Datasets include:
pdb_t$datasets %>% left_join(pdb_t$source_statistics, c(dataset_id = "id")) %>%
knitr::kable()
dataset_id.x dataset_name dataset_id.y cell_lines tissues drugs experiments
1 CCLE 1 504 23 24 11670
2 CTRPv2 2 707 29 139 79903
3 FIMM 3 887 25 545 395263
4 gCSI 4 410 24 16 6560
5 GDSC1000 5 71 1 90 9413
6 GRAY 6 0 0 0 0
7 UHNBreast 7 15 1 4 52