-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvideo_predict_using_model.py
104 lines (82 loc) · 4.16 KB
/
video_predict_using_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import math
import os
import os.path
import pickle
import cv2
from sklearn import neighbors
from PIL import Image, ImageDraw
import face_recognition
from face_recognition.face_recognition_cli import image_files_in_folder
from pathlib import Path
def predict(X_img, knn_clf=None, model_path=None, distance_threshold=0.6):
"""
Recognizes faces in given image using a trained KNN classifier
:param X_img: path to image to be recognized
:param knn_clf: (optional) a knn classifier object. if not specified, model_save_path must be specified.
:param model_path: (optional) path to a pickled knn classifier. if not specified, model_save_path must be knn_clf.
:param distance_threshold: (optional) distance threshold for face classification. the larger it is, the more chance
of mis-classifying an unknown person as a known one.
:return: a list of names and face locations for the recognized faces in the image: [(name, bounding box), ...].
For faces of unrecognized persons, the name 'unknown' will be returned.
"""
if knn_clf is None and model_path is None:
raise Exception("Must supply knn classifier either thourgh knn_clf or model_path")
# Load a trained KNN model (if one was passed in)
if knn_clf is None:
with open(model_path, 'rb') as f:
knn_clf = pickle.load(f)
# Load image file and find face locations
X_face_locations = face_recognition.face_locations(X_img)
# If no faces are found in the image, return an empty result.
if len(X_face_locations) == 0:
return []
# Find encodings for faces in the test image
faces_encodings = face_recognition.face_encodings(X_img, known_face_locations=X_face_locations)
# Use the KNN model to find the best matches for the test face
closest_distances = knn_clf.kneighbors(faces_encodings, n_neighbors=1)
are_matches = [closest_distances[0][i][0] <= distance_threshold for i in range(len(X_face_locations))]
# Predict classes and remove classifications that aren't within the threshold
return [(pred, loc) if rec else ("Unknown", loc) for pred, loc, rec in zip(knn_clf.predict(faces_encodings), X_face_locations, are_matches)]
if __name__ == "__main__":
# Open the input movie file
input_movie = cv2.VideoCapture("data/videos/random.mov")
length = int(input_movie.get(cv2.CAP_PROP_FRAME_COUNT))
# Create an output movie file (make sure resolution/frame rate matches input video!)
fourcc = cv2.VideoWriter_fourcc(*'MP42')
output_movie = cv2.VideoWriter('random.mp4', fourcc, 29.97, (1280, 720))
# Initialize some variables
frame_number = 0
while True:
# Grab a single frame of video
ret, frame = input_movie.read()
frame_number += 1
# Quit when the input video file ends
if not ret:
break
# Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
rgb_frame = frame[:, :, ::-1]
detected_faces = predict(rgb_frame, model_path="models/trained_knn_model_1.clf")
# Print results on the console
for name, (top, right, bottom, left) in detected_faces:
print("- Found {} at ({}, {})".format(name, left, top))
known_color = (0, 255, 0)
unknown_color = (0, 0, 255)
# Label the results
for name, (top, right, bottom, left) in detected_faces:
if name == 'Unknown':
color = unknown_color
else:
color = known_color
# Draw a box around the face
cv2.rectangle(frame, (left, top), (right, bottom), color, 2)
# Draw a label with a name below the face
label = name #+ ' - ' + str("{0:.2f}".format(distance))
cv2.rectangle(frame, (left, bottom - 25), (right, bottom), color, cv2.FILLED)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(frame, label, (left + 6, bottom - 6), font, 2, (255, 0, 0), 1)
# Write the resulting image to the output video file
print("Writing frame {} / {}".format(frame_number, length))
output_movie.write(frame)
# All done!
input_movie.release()
cv2.destroyAllWindows()