-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathmain.py
274 lines (221 loc) · 10 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
"""
Run this script to launch training
EXAMPLE:
>>> TPU_NAME=gsoc-project python3 main.py
>>> # for running dummy training on TPUs
>>> DUMMY_DATA_PATH=gs://gsoc-librispeech-us/dev-clean/dev-clean-0.tfrecord TPU_NAME=gsoc-project python3 main.py
"""
import os
from dataclasses import asdict, dataclass, field, replace
from typing import List
import tensorflow as tf
import wandb
import numpy as np
from data_utils import LibriSpeechDataLoader, LibriSpeechDataLoaderArgs
from training_utils import fetch_callbacks, is_gpu_available, is_tpu_available
from wav2vec2 import CTCLoss, Wav2Vec2Config, Wav2Vec2ForCTC
TPU_NAME = os.getenv("TPU_NAME", "none")
DATA_BUCKET_NAME = os.getenv("DATA_BUCKET_NAME", "gsoc-librispeech-us")
CKPT_BUCKET_NAME = os.getenv("CKPT_BUCKET_NAME", "gsoc-checkpoints-us")
DUMMY_DATA_PATH = os.getenv("DUMMY_DATA_PATH", "none")
@dataclass
class TrainingArgs:
# main hparams
stage1_lr: float = 1e-3
stage1_epochs: int = 15
stage2_lr1: float = 1e-4
stage2_transition_epochs: int = 10
stage2_lr2: float = 5e-5
stage2_epochs: int = 15
batch_size_per_device: int = 32
logging_steps: int = 16
# regularization
apply_spec_augment: bool = True
survival_prob: float = 1
# try to keep everything multiple of 128 on TPUs
# 246000 is 768 for the transformer layer
audio_maxlen: int = 246000
labels_maxlen: int = 256
seed: int = 42
from_tfrecords: bool = True
# For training, we converted complete data into multiple tfrecords
# these tfrecords are further stored in `DATA_BUCKET_NAME`
# note tfrecords from different splits are stored in different directories in same bucket
# for more information on data prepartion, please checkout `readme.md`
train_tfrecords: List[str] = field(
repr=False,
default_factory=lambda: [
f"gs://{DATA_BUCKET_NAME}/train-clean-100/",
f"gs://{DATA_BUCKET_NAME}/train-clean-360/",
f"gs://{DATA_BUCKET_NAME}/train-other-500/",
]
)
# similarly dev data is stored in dev-clean & dev-other directory in same bucket
val_tfrecords: List[str] = field(
repr=False,
default_factory=lambda: [
f"gs://{DATA_BUCKET_NAME}/dev-clean/",
# f"gs://{DATA_BUCKET_NAME}/dev-other/",
]
)
# similarly test data is stored in test-clean & test-other directory in same bucket
test_tfrecords: List[str] = field(
repr=False,
default_factory=lambda: [
f"gs://{DATA_BUCKET_NAME}/test-clean/",
# f"gs://{DATA_BUCKET_NAME}/test-other/",
]
)
train_dir: str = "../data/LibriSpeech/test-clean/"
val_dir: str = "../data/LibriSpeech/test-clean/"
test_dir: str = "../data/LibriSpeech/test-clean/"
model_id: str = "gs://gsoc-weights/tf-wav2vec2-base"
ckpt_path: str = f"gs://{CKPT_BUCKET_NAME}/experiment"
# wandb args
project_name: str = "gsoc-wav2vec2"
def __post_init__(self):
if DUMMY_DATA_PATH != "none":
self.train_dir = self.val_dir = self.test_dir = None
self.train_tfrecords = tf.io.gfile.glob(DUMMY_DATA_PATH)
self.test_tfrecords = self.val_tfrecords = self.train_tfrecords
assert self.from_tfrecords
else:
if self.from_tfrecords:
self.train_dir = self.val_dir = self.test_dir = None
train_tfrecords = [
f"{record}*.tfrecord" for record in self.train_tfrecords
]
self.train_tfrecords = tf.io.gfile.glob(train_tfrecords)
val_tfrecords = [f"{record}*.tfrecord" for record in self.val_tfrecords]
self.val_tfrecords = tf.io.gfile.glob(val_tfrecords)
test_tfrecords = [
f"{record}*.tfrecord" for record in self.test_tfrecords
]
self.test_tfrecords = tf.io.gfile.glob(test_tfrecords)
assert (
len(self.train_tfrecords) > 0
and len(self.val_tfrecords) > 0
and len(self.test_tfrecords) > 0
)
else:
self.train_tfrecords = self.val_tfrecords = self.test_tfrecords = None
def build_model(args):
model_config = Wav2Vec2Config(apply_spec_augment=args.apply_spec_augment, survival_prob=args.survival_prob)
model = Wav2Vec2ForCTC(model_config, input_shape=(1, args.audio_maxlen))
print(f"loading model from {args.model_id}")
model.load_weights(f"{args.model_id}/tf_model")
return model
def main(args):
# on TPUs, we need to connect to TPU cluster first
# then TensorFlow will be able to detect TPUs
if TPU_NAME != "none":
print("############ INITIATING TPU ############")
resolver = tf.distribute.cluster_resolver.TPUClusterResolver(TPU_NAME)
tf.config.experimental_connect_to_cluster(resolver)
print("##############################################")
if is_tpu_available():
tf.tpu.experimental.initialize_tpu_system(resolver)
print("All devices: ", tf.config.list_logical_devices("TPU"))
strategy = tf.distribute.TPUStrategy(resolver)
elif is_gpu_available():
print("All devices: ", tf.config.list_logical_devices("GPU"))
strategy = tf.distribute.MirroredStrategy()
else:
print("All devices: ", tf.config.list_logical_devices("CPU"))
raise NotImplementedError
global_batch_size = strategy.num_replicas_in_sync * args.batch_size_per_device
print("Training with global batch size of", global_batch_size)
print(args, end="\n\n")
print("######### Preparing dataset #########")
tr_data_args = LibriSpeechDataLoaderArgs(
data_dir=args.train_dir,
from_tfrecords=args.from_tfrecords,
tfrecords=args.train_tfrecords,
batch_size=global_batch_size,
audio_maxlen=args.audio_maxlen,
audio_pad_id=0,
labels_maxlen=args.labels_maxlen,
labels_pad_id=0,
)
tr_dataset = LibriSpeechDataLoader(tr_data_args)
tr_dataset = tr_dataset(seed=args.seed, drop_remainder=True)
val_data_args = replace(
tr_data_args, data_dir=args.val_dir, tfrecords=args.val_tfrecords
)
val_dataset = LibriSpeechDataLoader(val_data_args)
val_dataset = val_dataset(seed=None, drop_remainder=True)
test_data_args = replace(
val_data_args, data_dir=args.test_dir, tfrecords=args.test_tfrecords
)
test_dataset = LibriSpeechDataLoader(test_data_args)
test_dataset = test_dataset(seed=None, drop_remainder=True)
# `CTCLoss` needs to know raw-speech input shape in advance
# Hence, defining it here
model_input_shape = (args.batch_size_per_device, args.audio_maxlen)
# NOTE: here we are using `batch_size_per_device` instead of `global_batch_size`
# since loss will be calculated over each microbatch & will get summed
with strategy.scope():
print("######### Preparing model #########")
model = build_model(args)
# `division_factor` should be passed else loss will be summed
# it will help us in distributed training over several processes
loss = CTCLoss(
model.config, model_input_shape, division_factor=global_batch_size
)
# training is divided into 2 stages, hence we will compile model twice & call .fit(...) twice
print("######################### STAGE-1 #########################")
# for 1st stage, we will just train the LM head (i.e. top most dense layer) untill the convergence
# this will ensure pre-trained weights don't get penalized because of randomly initialized LM head
print("######## FREEZING THE BACKBONE (i.e all pretrained weights) ########")
# till `stage1_epochs`, we will train only `lm_head`
model.layers[0].trainable = False
model.summary()
optimizer = tf.keras.optimizers.Adam(learning_rate=args.stage1_lr)
model.compile(optimizer=optimizer, loss=loss)
try:
history = model.fit(
tr_dataset,
validation_data=val_dataset,
epochs=args.stage1_epochs,
callbacks=fetch_callbacks(args, is_stage2=False),
verbose="auto",
)
print(history.history)
except KeyboardInterrupt:
print("Interrupting through KEYBOARD")
print("###########################################################")
print("######################### STAGE-2 #########################")
# In 2nd stage, we will fine-tune the complete model except the feature extraction layers
# It's recommended to freeze all the feature extraction layers during fine-tuning stage
model.trainable = True
print("############## FREEZING THE FEATURE_EXTRACTION LAYERS ##############")
for i in range(len(model.layers[0].layers) - 2):
model.layers[0].layers[i].trainable = False
model.summary()
optimizer = tf.keras.optimizers.Adam(learning_rate=args.stage2_lr1)
model.compile(optimizer=optimizer, loss=loss)
try:
history = model.fit(
tr_dataset,
validation_data=val_dataset,
epochs=args.stage2_epochs,
callbacks=fetch_callbacks(args, is_stage2=True),
verbose="auto",
)
print(history.history)
except KeyboardInterrupt:
print("Interrupting through KEYBOARD")
print("###########################################################")
print("\n######### Running evaluation #########")
results = model.evaluate(test_dataset, return_dict=True)
print(results)
if __name__ == "__main__":
# setting up args for training (supports wandb sweep for distributed hparams tuning)
args = TrainingArgs()
wandb.init(project=args.project_name, config=asdict(args))
args.ckpt_path = os.path.join(args.ckpt_path + f"-{wandb.run.id}")
# setting up seed for reproducible runs
tf.random.set_seed(args.seed)
np.random.seed(args.seed)
# start training
main(args)