-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcomplexf20.tex
240 lines (194 loc) · 11.7 KB
/
complexf20.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
\documentclass{article}
\usepackage{amsthm}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage[margin=0.5in]{geometry}
\usepackage{hyperref}
\usepackage{tikz}
\usepackage{wasysym}
\DeclareMathOperator{\re}{re}
\DeclareMathOperator{\res}{res}
\DeclareMathOperator{\Imag}{Im}
\DeclareMathOperator{\Length}{Length}
\title{\href{https://math.umn.edu/sites/math.umn.edu/files/exams/complexanalysis_fall2020.pdf}{Fall 2020 Complex Analysis Preliminary Exam}}
\author{University of Minnesota}
\date{}
\begin{document}
\maketitle
This is a verbatim transcription of an exam which received a score of 89/100. Mistakes are intentionally included.
\begin{enumerate}
\item Give a conformal mapping from the half-disk $H = \{z: |z| < 1 \text{ and } \Imag(z)>0\}$ to the upper half-plane
$\mathfrak{h} = \{ z : \Imag (z) > 0 \}$.
\begin{proof}
Define $f: H \rightarrow D$ by $z \mapsto z^2$ where $D$ is the unit disk, slit along $\mathbb{R}_{\geq 0}$.
Define $g: D \rightarrow \mathfrak{h}$ by the Cayley map $\frac{iz + i}{-z+1}$.
We clam [sic] $g \circ f$ is the desired mapping. Since $\arg (z) \in (0, \pi) $ for all $z \in H$ and $|z| < 1$, then
$\arg(z) \in (2\cdot 0, 2\pi)$ and $|z^2| < 1^2$, so $f$ is inded [sic]. Note $f^\prime(z) = 2z$ is only zero at
$z=0$, but $0 \not \in H$, so it is indeed conformal.
The derivatve [sic] of $g$ is $g^\prime = \frac{2i}{(1-z)^2}$, which is nonzero on its domain,
which is $\mathbb{C} \backslash \{1\}$. Moreover $f(H) \not \ni 1$.
Thus, $g^\prime(f) \neq 0$, and so the composition $g \circ f$ is conformal.
To see $f$ is onto, let $z \in D.$ Then $\arg(z) \in (0, 2\pi)$ and $|z| \leq 1$ so
$|\sqrt{z}| \leq 1$ (choosing the principal branch of $\sqrt{\bullet}$) and $\arg(\sqrt{z})$ is in $(0, \pi)$ so
$f$ is onto. To see $g$ is onto, note that its explicit inverse is $\frac{z-i}{z+i}$, which takes points closer
to $i$ than to $-i$ (i.e. the upper half plane) to a point in the slit disk.
\end{proof}
\item Write three (non-zero) terms of the Laurent expansion of $f(z) = \frac{1}{z(z-1)(z-2)}$ centered at $1$ and convergent in
$0 < |z-1| < 1$.
\begin{proof}
First, apply the change of coordinates $w = z-1$. Then we can write $f(z) = f(w+1) = \frac{1}{w(w+1)(w-1)}$
and we seek the Laurent expansion of $f(w+1)$ centered at $w=0$. Using geometric series, this becomes
\[ \frac{1}{w(w+1)(w-1)} = \frac{1}{w} \left ( - \sum_{n \geq 0} w^n \right ) \left ( \sum_{n \geq 0} (-w)^n \right). \]
Since $\frac{1}{w-1} = - \sum_{n \geq 0} w^n$ for $|w| < 1$, and
$\frac{1}{w+1} = \frac{1}{1-(-w)} = \sum_{n \geq 0} (-w)^n$ for $|w| < 1$. Then multiplying, we get
\begin{align*}
f(w+1) &= \frac{1}{w} (-1)(1) + \frac{1}{w}(-w + (+w))\\
&\;+ \frac{1}{w} ( -w^2 + (-w)(-w) + (-w)^2) \\
&\;+ \frac{1}{w} (-w^3 + (-w^2)(-w) + (-w)(-w)^2 + (-w)^3)\\
&\;+ \frac{1}{w} (-w^4 + (-w^3)(-w) + (-w^2)((-w)^2) + (-w)(-w)^3 +(-w)^4)\\
&\;+ \cdots\\
&= \frac{-1}{w} + 0 + w + 0 +(-1)w^3 + \cdots
\end{align*}
Undoing our change of coordinates, we get
\[ f(z) = \frac{-1}{z-1} + (z-1) - (z-1)^3 + \cdots \]
Since it converged for $|w|<1$, it also converges for $|z-1| < 1$.
\end{proof}
\item Let $f$ be an entire function taking real values on the real line.
Show that, for all complex $z$, $\overline{f(z)} = f(\overline{z})$.
\begin{proof}
The Schwarz reflection principle states that if $\Omega$ is a region which is symmetric about the real-axis, and
$f$ is a function hollomorphic [sic] in $\Omega \cap \{z: \Imag(z) > 0\}$ which has a continuation onto
$\mathbb{R} \cap \Omega$ and that continuation is real-valued, then there is a holomorphic function $F$ on
$\Omega$ st $F=f$ on $\Omega \cap \{ z : \Imag(z) > 0\}$ and moreover, $F(z) = \overline{f(\overline{z})}$.
Note that we may take $\Omega = \mathbb{C}$ and the continuation to be just the real values on $\mathbb{R}$
which we know it takes.
Then $\overline{F(z)} = \overline{f(z)} = \overline{\overline{f(\overline{z})}} = f(\overline{z}).$
\end{proof}
\item Classify entire functions $f$ such that there is a constant (possibly depending on $f$) such that
$|f(z)| \leq C \cdot \log (1 + |z|)$.
\begin{proof}
If $f$ is entire it admits a powder [sic] series representaton [sic] centered at $0$, so
\[ f(z) = \sum_{n \geq 0} \alpha_n z^n\]
Cauchy's inequality tells us that on a circle of radius $R$ about $z_0$, call it $\gamma_R$, that
\[ | f^{(n)} (z_0) |\leq \frac{n! \max_{z \in \gamma_R} |f(z)|}{R^n} \]
to extract the coefficients $\alpha_n$ from $f$ note that
\[ \alpha_n = f^{(n)}(0)/n!\]
so taking $z_0 = 0$, we get
\[ | \frac{f^{(n)}(0)}{n!}| = |\alpha_n| = \leq \frac{\max_{z \in \gamma_R} |f(z)|}{R^n} \]
The provided bound tells us that $\max_{C_R} |f(z)| \leq C \cdot \log (1+R)$ and so
\[ | \alpha_n | \leq \frac{C \log (1+R)}{R^n} \]
This is independent of $R$, so we take the limit
\[ \lim_{R \rightarrow \infty} \frac{C log(1+R)}{R^n} = \lim_{R \rightarrow \infty} \frac{C \frac{1}{1+R}}{nR^{n-1}} \;\;\; \text{(by L'H\^opitals [sic] rule)}\]
which vanishes for $n \geq 1$. So $f$ is constant, but we can do better. If $f$ is constant,
$f(z) \equiv f(0)$. So $|f| \leq C \log(1+|0|) = 0$, so $f$ is identically 0 on $\mathbb{C}$.
\end{proof}
\item Evaluate $\int_0^\infty \frac{x^{1/2}}{1+x^2} dx$
\begin{proof}
We compute by passing to $\mathbb{C}$ and defing [sic] $f(x) = \frac{z^{(1/4)}}{1+z^2}$.
Choose $z^{1/4}$ to be defined using the branch cut from the origin through $-i$. In particular
$f$ is not defined at zero. Define the curve $\gamma_{R,\epsilon}$ for $R>1$, $0 < \epsilon < 1$ as the
union of the circles of radii $R, \epsilon$ with counter clockwise and clockwise orientations respectively,
and connect them along $[-R, \epsilon]$\footnote{This should be $-\epsilon$.} and $[\epsilon, R]$, to get
\begin{center}
\begin{tikzpicture}
%\draw[step=1cm,gray,very thin] (-2.9,-0.9) grid (2.9,2.9);
\draw[thin,->] (0,-1) -- (0,3);
\draw[thin,->] (-3,0) -- (3,0);
\node[anchor = north east] at (0,3) {$i \mathbb{R}$};
\node[anchor = west] at (3,0) {$ \mathbb{R}$};
\node[fill = black, inner sep=1pt, circle] at (0,1) {};
\node[anchor = west] at (0,1) {$i$};
\node[anchor = north] at (2.3,0) {$R$};
\node[anchor = north] at (.5,0) {$\epsilon$};
\node at (1.9,1.8) {$\gamma_{R,\epsilon}$};
\draw[thick, ->] (2.3,0) arc (0:45:2.3) ;
\draw[thick] (2.3,0) arc (0:180:2.3) ;
\draw[thick, ->] (-.5,0) arc (0:-150:-.5);
\draw[thick] (-.5,0) arc (0:-180:-.5);
\draw[thick] (0.5,0)--(2.3,0);
\draw[thick] (-0.5,0)--(-2.3,0);
\end{tikzpicture}
\end{center}
The residue theorem states that
\[ \int_{\gamma_{R,\epsilon}} f dz = 2\pi i \sum_{\substack{\text{poles}\\\text{inside}\\ \gamma_{R,\epsilon}}} \res_{z_0}(f) \]
The only pole of $f$ inside $\gamma_{R,\epsilon}$ is the one at $z=i$ which is simple. So we may compute
\begin{align*}
\res_i (f) &= \lim_{z \rightarrow i} (z-i) f(z) \\
&= \frac{i^{1/4}}{2i}
\end{align*}
and so $\int_{\gamma_{R,\epsilon}} f dz = \pi i^{1/4}$. Now observe that, if $C_R^+$ represents the
circle of radius $R$ in the upper half plane, then
\[\int_{\gamma_{R,\epsilon}} f dz = \int_{C_R^+} f dz - \int_{C_\epsilon^+} f dz + \int_{-R}^{-\epsilon} f dz + \int_\epsilon^R f dz \]
where we subtract the integral on $C_\epsilon^+$ because of the choice of orientation.
We will show that the circular parts vanish in the limit, since $\int_{\gamma_{R,\epsilon}} f dz$ was independent of $R,\epsilon.$
The estimation lemma gives the bound
\begin{align}
\left | \right | & \leq \Length(C^+_R) \max_{|z| = R} |f(z)| \nonumber\\
&= \pi R \max_{|z| = R} \left | \frac{z^{1/4}}{z^2+1} \right | \nonumber\\
&= \pi R^{5/4} \max_{|z| = R} \left | \frac{1}{z^2+1} \right | \label{eqn:Star}
\end{align}
Note that $\left | \frac{1}{z^2+1} \right |$ is maximized when $|z^2 - (-1)|$ is minimized.
Since $|z| = R$ is closes to $-1$ at $R = -z$, we can write
\[ (\ref{eqn:Star}) = \pi R^{5/4} \frac{1}{(-R)^2 + 1} \]
Since $5/4 < 2$, (\ref{eqn:Star}) vanishes upon taking $R \rightarrow \infty$.
The same computation shows that
\[ \left | \int_{C^+_{\epsilon}} f(z) dz \right | \leq \pi \epsilon^{5/4}/(\epsilon^2+1)\]
as $\epsilon \rightarrow 0$, the numerator vanishes and the denominator $\rightarrow 1$.
So
\[ \pi i^{1/4} = \int_{\gamma_{\infty, 0}} f(z) dz = \int_{-\infty}^0 f dz + \int_0^\infty f dz \]
A change of variables gives us
\[ \int_{-\infty}^0 f(z) dz = \int_{\infty}^0 f(-z) (-1) dz = \int_0^\infty f(-z) dz.\]
But $f(-z) = (-1)^{1/4} f(z)$ so we get
\[ \pi i^{1/4} = \left ( (-1)^{1/4} _1 \right ) \int_0^\infty f(z) dz \]
so
\begin{align*}
\int_0^\infty f(z) dz = \pi i^{1/4}/ ((-1)^1/4 + 1) &= \pi \frac{i^{1/4}}{i^{1/2} +1}\\
&=\pi/(i^{1/4} + i^{-1/4})
\end{align*}
But note that
\[i^{1/4} = \cos (\pi/8) + i \sin (\frac{\pi}{8})\]
\[i^{-1/4} = \cos (\pi/8) - i \sin (\pi/8) \]
so
\[ \int_0^\infty f(z) dz = \boxed{\frac{\pi}{2 \cos(\pi/8)}}\]
\end{proof}
\item Let $f, g$ be holomorphic functions on $\{z : |z| < 2\}$ with $f$ nonvanishing on $|z| - 1$.
Show that for all sufficiently small $\epsilon > 0$ the function $f + \epsilon g$ has the same number of zeros inside $|z| = 1$
as does $f$.
\begin{proof}
Rouche's theorem tells us that if $f,h$ holomorphic on and inside (eg) the unit disk, and $|f|>|h|$ on
all of the boundary $|z|=1$, then $f, f+h$ have the same number of zeros inside the unit disk.
Since the boundary is compact (closed and bounded), $|f|,|g|$ achieve both a maximum and a
minimum on $|z|=1$. Let $m:= \min_{|z|=1} |f|$ and $M:= \max_{|z|=1} |g|$. Then $|\frac{g}{M}| \leq 1$
and so
\[ \left | \frac{mg}{M} \right | \leq |f| \;\;\; \text{ on } |z|=1.\]
then take $\epsilon < m/M$ and $h = \epsilon g$ in the statement of Rouche's theorem.
\end{proof}
\item Describe all harmonic functions on the punctured unit disk $\{z : 0 < |z| < 1\}$, continuous on the punctured closed disk
$\{z: 0 < |z| \leq 1\}$ whose restriction to $\{z: |z| = 1\}$ is the zero function.
\textbf{WARNING: The folllowing solution is incorrect. See \href{https://math.stackexchange.com/questions/376677/characterization-of-harmonic-functions-on-the-punctured-disk}{this StackExchange post}}:
https://math.stackexchange.com/questions/376677/characterization-of-harmonic-functions-on-the-punctured-disk
\begin{proof}
The maximum modulus principle tells us that $f$ is holomorphic on $|z|<1$, then $|f|$ does not
attain a maximum on $|z| < 1$, and so any maximum must occur on $|z| = 1$. If a function $f$
is harmonic on $\{z: 0 < |z| < 1\}$, it admits an analytic continuation on $\{z: |z| \leq 1\}$
call this continuation $F$. Then $|F|$ attains its maximum on $|z|=1$. Since $F=0$ on $|z|=1$,
$|F| \leq 0$ on the whole punctured disk, and so $f$ must be identically $0$.
\end{proof}
\item Show that the curve $z^3+w^3=1$ has genus 1.
\begin{proof}
The degree-genus formula tells us that if we have a smooth, irreducible plane curve, then
its genus is
\[ \frac{(d-1)(d-2)}{2}\]
where $d$ is the degree of the curve. To see that the given curve is smooth, homogenize
so we are dealing with $p = z^3+w^3-u^3 = 0$. The partial derivatives
$\frac{\partial}{\partial z} p = 3z^2,
\frac{\partial}{\partial w} p = 3w^2,
\frac{\partial}{\partial u} p = -3u^2$
are only simultaneously $0$ when (in homogeneous coordinates) we are at the point
$[0:0:0]$. But that point is never on our given curve which looks like
$[* : * : 1]$. To see it is irreducible, note that $-w^3+1$ has zeros at the 3 third roots of unity,
which are distinct, so it is squarefree. Hence, we apply the formula with $d=3$ to get
d$\frac{(3-1)(3-2)}{2} = 1$
\end{proof}
\end{enumerate}
\end{document}