-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtopologys16.tex
141 lines (124 loc) · 5.98 KB
/
topologys16.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
\documentclass{article}
\usepackage{amsthm}
\newtheorem*{definition}{Definition}
\newtheorem*{theorem}{Theorem}
\newtheorem*{lemma}{Lemma}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage[margin=1in]{geometry}
\usepackage{hyperref}
\usepackage{tikz}
\usetikzlibrary{cd}
\usetikzlibrary{patterns}
\DeclareMathOperator{\Tor}{Tor}
\DeclareMathOperator{\im}{im}
\renewcommand{\theequation}{\roman{equation}}
\title{\href{https://math.umn.edu/sites/math.umn.edu/files/exams/mantops16.pdf}{Spring 2016 Manifolds and Topology Preliminary Exam}}
\author{University of Minnesota}
\date{}
\begin{document}
\maketitle
\section*{Part A}
\begin{enumerate}
\item
% \begin{enumerate}
%
% \item Suppose $X$ is a space with a continuous product $\mu : X \times X \rightarrow X$
% together with an element $e \in X$ such that $\mu(x,e) = \mu(e,x) = x$ for all $x \in X$.
% For loops $\alpha, \beta : [0,1] \rightarrow X$ starting and ending at $e$, define
% \[ \alpha \circ \beta (t) = \mu( \alpha(t), \beta(t)) \]
% Suppose that $*$ is the ordinary concatenation product on loops. Show there is an
% identity
% \[ (\alpha * \beta) \circ ( \gamma * \delta) = (\alpha \circ \gamma) * (\beta \circ \delta). \]
%
% \item Suppose $\circ$ is the product from the previous problem. Show that it determines a well-defined
% product $\circ : \pi_1(X,e) \times \pi_1(X,e) \rightarrow \pi_1(X,i)$ with unit $c_e$ the trivial loop at $e$.
%
% \item Use the previous results to conclude that $\circ = *$ and both products are commutative
%
% \item Describe the fundamental group of the Klein bottle using generators and relations.
%
% \end{enumerate}
%
\item
\item
\begin{enumerate}
\item For $n >0$ define the degree of a continuous map $S^n \rightarrow S^n$.
\begin{definition}
If $n>0$ and $f:S^n \rightarrow S^n$ is continuous map, then the induced map on homology
$f_*: H_n(S^n) \rightarrow H_n(S^n)$ is a homomorphism
$f_*: \mathbb{Z} \rightarrow \mathbb{Z}$.
The only homomorphism from $\mathbb{Z} \rightarrow \mathbb{Z}$ is multiplication by a constant
integer, so $f_*(x) = dx$ for $x \in H_n(S^n)$ and $d \in \mathbb{Z}$.
Then $d$ is the degree of $f$.
\end{definition}
\item If $M$ is an $n$-dimensional manifold with $n > 0$ and $p \in M$, show that
there is an isomorphism of homology groups
\[ H_k(M, M\backslash \{ p\}) \cong \begin{cases} \mathbb{Z} & \text{ if $n = k$ }\\ 0 & \text{otherwise} \end{cases} \]
\begin{proof}
Since $M$ is a manifold, we may take an open neighborhood $U_p \cong \mathbb{R}^n$.
Define $C = M- U_p$. Then $M-C = U_p$ and $(M-p) - C = U_p - p$.
The excision theorem tells us that
\[H_*( M, M - p ) \cong H_*(M - C, (M-p)- C) = H_*(U_p, U_p-p)\]
The long exact sequence on relative homology tells us
\[\begin{tikzcd}
\cdots \arrow[r] & \tilde{H}_k(U_p - p) \arrow[r] & \tilde{H}_k(U_p) \arrow[r] & \tilde{H}_k(U_p, U_p-p) \arrow[r] & \tilde{H}_{k-1}(U_p-p) \arrow[r] & \cdots.
\end{tikzcd}\]
We know that $U_p - p$ is homotopic to the $n-1$ sphere and since homology is a homotopy invariant, we get that
\[\tilde{H}_k(U_p - p ) = \tilde{H}_k(S^{n-1}) = \begin{cases} \mathbb{Z} & {k=n-1} \\ 0 & \text{otherwise} \end{cases} \]
and so when $k \neq n-1$, we have that
$\tilde{H}_k(U_p) \cong \tilde{H}_k(U_p, U_p-p) $. Moreover $\tilde{H}_k(U_p) = 0$ for all $k$, and reduced homology agrees with
singular homology for $k>0$, so we have so far that
\[H_k(U_p, U_p-p) = \begin{cases} 0 & k \neq 0, n-1 \\ ?? & \text{otherwise} \end{cases}\]
Now, focusing near $k=n-1$ we have the exactness of the sequence
\[\begin{tikzcd}
\cdots \arrow[r] & H_n(U_p) \arrow[r] & H_n(U_p, U_p-p) \arrow[r] & H_{n-1}(U_p - p) \arrow[r] & H_{n-1}(U_p) \arrow[r] & \cdots.
\end{tikzcd}\]
Since $H_n (U_p) = H_{n-1}(U_p) = 0$ the above sequence induces the isomorphism
$H_n(U_p, U_p-p) \cong H_{n-1}(U_p - p) \cong \mathbb{Z}$.
Finally, near $0$ we have
\[ \begin{tikzcd}
\cdots \arrow[r] & H_0 (U_p) \arrow[r] & H_0 (U_p, U_p-p) \arrow[r] & 0
\end{tikzcd} \]
which is exactly
\[ \begin{tikzcd}
\cdots \arrow[r] & 0 \arrow[r] & H_0 (U_p, U_p-p) \arrow[r] & 0
\end{tikzcd} \]
and so $H_0 (U_p, U_p-p) = 0$
\end{proof}
\item Show that the subspace
\[ \{(x,y,z) | \text{either $(x=0)$ or $(y=z=0)$ }\} \subset \mathbb{R}^3 \]
is not a manifold.
\begin{proof}
Suppose the subspace \emph{were} a manifold. Then in the neighborhood of $(0,0,0)$, we can find $U_0 \cong \mathbb{R}^n$ for some $n$ (perhaps the manifold is impure).
Then $U_0 - (0,0,0)$ is homotopic to an $n-1$ sphere. When $n \geq 1$, this means that $U_0 - (0,0,0)$ has one connected component.
On the other hand when $n = 0$, $U_0 - (0,0,0)$ has two connected components.
The subspace is the union of the $x$ axis with the $y-z$-plane.
But we see that any neighborhood of $(0,0,0)$ in the subspace given can be broken into three disconnected components:
the intersection with the positive $x$-axis, the negative $x$-axis, and the punctured $y-z$-plane missing the origin.
Thus every neighborhood of the origin is \emph{not} homeomorphic to Euclidean space, and so the subspace is not a manifold.
\end{proof}
\item For $n \in \mathbb{Z}$ give an example of a continuous map $S^1 \rightarrow S^1$ of
degree $n$.
\begin{proof}
Let $f:S^1 \rightarrow S^1$ be given by $z \mapsto z^n$, where we implicitly think of $S^1 = \{ z \in \mathbb{C} : |z|=1 \}$.
We claim that the degree of $f$ is $n$.
Let $z = e^{i \theta}$ where $\theta \in \mathbb{R}$.
The fiber $f^{-1}(z) = \{ z \in S^1 : z=e^{i(\theta + 2\pi k)/n}, k \in \mathbb{Z}\}$ consists of $n$ points
$Z = \{ e^{i \theta/n} , e^{i \theta/n + i 2\pi 1/n},..., e^{i \theta/n + i 2\pi (n-1)/n} \}$.
$f$ is orientation preserving, and so $\deg f |_{z} = 1$ for all $z \in Z$.
Then $\deg f = \sum_{z \in Z} \deg f |_{z} = n$.
\end{proof}
\end{enumerate}
\end{enumerate}
%\section*{Part B}
%\begin{enumerate}
% \item
%
% \item
%
% \item
%
%\end{enumerate}
\end{document}