-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgp_wrapper.h
284 lines (210 loc) · 9.16 KB
/
gp_wrapper.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
#ifndef GP_WRAPPER_H
#define GP_WRAPPER_H
#include <math.h>
#include <time.h>
#include <stdio.h>
#include <stdlib.h>
#include "goto_tools.h"
#include "containers.h"
#include "eigen_wrapper.h"
#include "kd.h"
#include "gaussian_process.h"
#include "chisq.h"
////////////code for diagnostic testing
enum{iAPS,iSimplex,iCoulomb,iCompass,iBisect,iNodeBisect,iRicochet};
///////////////
class function_wrapper{
public:
function_wrapper();
~function_wrapper();
virtual void evaluate(array_1d<double>&, double*);
virtual double diagnostic_evaluate(array_1d<double>&);
virtual int get_called();
};
class straddle_parameter{
/*
This class is meant to store both the target value of chisquared_lim and
the calculation of the S statistic from equation (1) of the paper.
If the user wanted to try a different combination of sigma, mu, and
chisquared_lim than equation(1), she should alter the code in the
operator () of this class.
*/
public:
~straddle_parameter();
straddle_parameter();
/*set the value of chisquared_lim*/
void set_target(double);
/*return the value of chisquared_lim*/
double get_target();
/*accept mu and sigma and return S (equation 1 of the paper)*/
double operator()(double,double) const;
private:
double target;
};
class gpWrapper : public function_wrapper{
/*
This class will contain both the chisquared function and the
gaussian_process for ModifiedAPS. That way, the node objects can
see the evaluate function
*/
public:
gpWrapper();
~gpWrapper();
/*
The functions evaluate() below are how APS actually calls the chisquared function.
There are two risks involved in just calling the operator() to the provided chisquared
function:
1) There is no obvious mechanism in APS preventing APS from calling points outside of the
allowed bounds of parameter space
2) There is no mechanism preventing APS from calling points that are infinitesimally
close to points that are already sampled and thus choking the Gaussian Process with neighbor
points that are essentially identical.
evaluate() fixes these problems. Whenever a point is proposed for chisquared evaluation,
evaluate first tests that it is in the bounds allowed by the chisquared function. If not,
evaluate returns chisquared = 2 x 10^30 and does not add the point to the Gaussian Process
(if points with absurdly high values of chisquared are kept in the Gaussian Process, our
attempts to predict chisquared using the Gaussian Process will become invalid near the boundaries
of parameter space).
If the point passes that test, evaluate() searches for the nearest neighbor to the proposed point.
If that neighbor is closer than a (normalized) distance of 1.0 x 10^-8 in parameter space,
evaluate returns the chisquared value of the nearest neighbor and, again, does not add the
new point to the Gaussian Process.
The arguments to evaluate are
array_1d<double> -- the point to be evaluated
double* -- a pointer to store the chisquared value of the point
int* -- a pointer to store the index of the point, assuming it is added to the Gaussina Process
(this is set to -1 if the point is not added to the Gaussian Process)
There are some cases in which APS may evaluate the validity of a point before calling evaluate.
In that case, one can pass the value 1 as a final int and evaluate() will dispense with
the validity tests described above.
*/
void evaluate(array_1d<double>&,double*,int*,int);
void evaluate(array_1d<double>&,double*,int*);
virtual void evaluate(array_1d<double>&,double*);
virtual double diagnostic_evaluate(array_1d<double>&);
void set_gp(gp*);
void set_chisq(chisquared*);
void set_strad(straddle_parameter*);
double straddle_value(double,double);
/*
determine whether or not the specified point is within the bounds allowed
by the chisquard funciton (return 1 if so; return 0 if not)
*/
int in_bounds(array_1d<double>&);
/*
Do all of the validity checks required by evaluate(), i.e.
1) is the point inside of the bounds allowed by the chisquared function
2) is the point farther than a normalized parameter space distance of 10^-8
from its nearest neighbor
If so return 1. If not, return 0.
The optional double* will store the chisquared value associated with the nearest
neighbor, if the nearest neighbor is too close. If the first test failed, this
pointer will store an absurdly high value (2 x 10^30)
*/
int is_valid(array_1d<double>&);
int is_valid(array_1d<double>&, double*);
/*
The function add_pt() actually adds a point to the Gaussian Process.
The arguments are
array_1d<double> -- the point to be added
double -- the chisquared value associated with that point
the function will return the index of the point, once it is added to the
Gaussian Process
add_pt() will also assess whether or not the point improves upon chisquared_min
or is a "good" point (i.e. whether chisquared<=chisquared_im)
*/
int add_pt(array_1d<double>&,double);
void freeze_boxes();
void unfreeze_boxes();
void get_box_quartiles(array_1d<int>&);
int get_ct_search();
/*
set_chimin() will set the minimum value of chisquared, the point at which that minimum occurred
and the index by which that point is stored in the Gaussian Process
If chisquared_lim is set relative to chisquared_min, this method will also update
the value of chisquared_lim
*/
void set_chimin(double,array_1d<double>&,int);
double get_good_max(int);
double get_good_min(int);
int get_ngood();
void set_good_max(int,double);
void set_good_min(int,double);
double get_chimin();
double get_minpt(int);
array_1d<double>* get_minpt();
void set_delta_chisquared(double);
double get_delta_chisquared();
void assert_target();
double call_chisq(array_1d<double>&);
int get_chisq_dim();
double get_chisq_time();
int get_global_mindex();
void evaluate_ngood();
int get_good_pt(int);
int get_dim();
int is_gp_null();
double get_target();
void nn_srch(array_1d<double>&,int,array_1d<int>&,array_1d<double>&);
int find_box(int);
int find_box(array_1d<double>&);
void add_to_unitSpheres(array_1d<double>&);
void unitSpheres_nn_srch(array_1d<double>&,int,array_1d<int>&,array_1d<double>&);
int is_unitSpheres_null();
int get_unitSpheres_pts();
double get_pt(int,int);
double get_fn(int);
double get_min(int);
double get_max(int);
double get_length(int);
double distance(int,int);
double distance(array_1d<double>&,array_1d<double>&);
double distance(int,array_1d<double>&);
double distance(array_1d<double>&,int);
void reset_cache();
double user_predict(array_1d<double>&,double*)const;
double user_predict(array_1d<double>&)const;
void actual_gradient(int,array_1d<double>&);
void actual_gradient(array_1d<double>&,array_1d<double>&);
int get_called();
int get_pts();
int get_search_ct();
double get_search_time();
int get_search_ct_solo();
double get_search_time_solo();
int get_search_ct_box();
double get_search_time_box();
int get_smallest_box();
int get_biggest_box();
int get_biggest_bad_box();
int get_n_small_boxes();
int get_n_optimal_boxes();
int get_nboxes();
int get_box_contents(int);
int get_box_contents(int,int);
double get_box_max(int,int);
double get_box_min(int,int);
chisquared* get_chifn();
/////////code for diagnostic testing
int set_iWhere(int);
int get_iWhere();
int get_whereCt(int);
int get_whereFrom(int);
void set_whereFrom(int,int);
//////////
private:
gp *gg;
chisquared *chisq;
straddle_parameter *strad;
kd_tree *unitSpheres;
array_2d<double> sphereSeedData;
array_1d<double> good_max,good_min,minpt;
array_1d<int> good_pts;
int global_mindex,target_asserted;
double chimin,delta_chisquared;
///////code for diagnostic testing
int iWhere;
array_1d<int> whereCt,whereFrom;
///////
};
#endif