forked from RoadoneP/ECCV2024_MBS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
486 lines (390 loc) · 20.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
import os
import utils
import random
import logging
import argparse
import datetime
import time
import math
import numpy as np
from omegaconf import OmegaConf
from metrics import StreamSegMetrics
import torch
from torch.utils import data
import torch.nn.functional as F
from utils import ext_transforms as et
from utils.tasks import get_tasks
from datasets import VOCSegmentation
from datasets import ADESegmentation
from core import Segmenter
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel
from torch.utils.data.distributed import DistributedSampler
from torch.utils.tensorboard import SummaryWriter
from utils import imutils
from utils.utils import AverageMeter
# argment parser
parser = argparse.ArgumentParser()
parser.add_argument("--config",
default='./configs/voc.yaml',
type=str,
help="config")
parser.add_argument("--local_rank", default=-1, type=int, help="local_rank")
parser.add_argument('--log', default='test.log')
parser.add_argument('--backend', default='nccl')
# calculate eta
def cal_eta(time0, cur_iter, total_iter):
time_now = datetime.datetime.now()
time_now = time_now.replace(microsecond=0)
scale = (total_iter-cur_iter) / float(cur_iter)
delta = (time_now - time0)
eta = (delta*scale)
time_fin = time_now + eta
eta = time_fin.replace(microsecond=0) - time_now
return str(delta), str(eta)
# logger function
def setup_logger(filename='test.log'):
logFormatter = logging.Formatter('%(asctime)s: %(message)s')
logger = logging.getLogger()
logger.setLevel(logging.INFO)
fHandler = logging.FileHandler(filename, mode='w')
fHandler.setFormatter(logFormatter)
logger.addHandler(fHandler)
cHandler = logging.StreamHandler()
cHandler.setFormatter(logFormatter)
logger.addHandler(cHandler)
# train/val/test data prepare
def get_dataset(opts):
""" Dataset And Augmentation
"""
train_transform = et.ExtCompose([
et.ExtResize(size=opts.dataset.crop_size),
et.ExtRandomScale((0.5, 2.0)),
et.ExtRandomCrop(size=(opts.dataset.crop_size, opts.dataset.crop_size), pad_if_needed=True),
et.ExtRandomHorizontalFlip(),
et.ExtToTensor(),
et.ExtNormalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
if opts.train.crop_val:
val_transform = et.ExtCompose([
et.ExtResize(opts.dataset.crop_size),
et.ExtCenterCrop(opts.dataset.crop_size),
et.ExtToTensor(),
et.ExtNormalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
else:
val_transform = et.ExtCompose([
et.ExtToTensor(),
et.ExtNormalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
if opts.dataset.name == 'voc':
dataset = VOCSegmentation
elif opts.dataset.name == 'ade':
dataset = ADESegmentation
else:
raise NotImplementedError
dataset_dict = {}
dataset_dict['train'] = dataset(opts=opts, image_set='train', transform=train_transform, cil_step=opts.curr_step)
dataset_dict['val'] = dataset(opts=opts, image_set='val', transform=val_transform, cil_step=opts.curr_step)
dataset_dict['test'] = dataset(opts=opts, image_set='test', transform=val_transform, cil_step=opts.curr_step)
return dataset_dict
# validate function
def validate(opts, model, loader, device, metrics):
"""Do validation and return specified samples"""
metrics.reset()
with torch.no_grad():
for i, (images, labels, _) in enumerate(loader):
images = images.to(device, dtype=torch.float32, non_blocking=True)
labels = labels.to(device, dtype=torch.long, non_blocking=True)
outputs, _, _, _ = model(images)
if opts.train.loss_type == 'bce_loss':
outputs = torch.sigmoid(outputs)
else:
outputs = torch.softmax(outputs, dim=1)
preds = outputs.detach().max(dim=1)[1].cpu().numpy()
targets = labels.cpu().numpy()
metrics.update(targets, preds)
score = metrics.get_results()
return score
# train function
def train(opts):
writer = SummaryWriter('runs/'+ str(args.log))
num_workers = 4 * len(opts.gpu_ids)
time0 = datetime.datetime.now()
time0 = time0.replace(microsecond=0)
# Get the target classes for the current task and step
target_cls = get_tasks(opts.dataset.name, opts.task, opts.curr_step)
# Calculate the number of classes for each step
opts.num_classes = [len(get_tasks(opts.dataset.name, opts.task, step)) for step in range(opts.curr_step+1)]
opts.num_classes = [1, opts.num_classes[0]-1] + opts.num_classes[1:]
curr_idx = [
sum(len(get_tasks(opts.dataset.name, opts.task, step)) for step in range(opts.curr_step)),
sum(len(get_tasks(opts.dataset.name, opts.task, step)) for step in range(opts.curr_step+1))
]
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
bg_label = 0
if args.local_rank==0:
print("==============================================")
print(f" task : {opts.task}")
print(f" step : {opts.curr_step}")
print(" Device: %s" % device)
print( " opts : ")
print(opts)
print("==============================================")
# Initialize the model with the specified backbone and number of classes
model = Segmenter(backbone=opts.train.backbone, num_classes=opts.num_classes,
pretrained=True)
if opts.curr_step > 0:
""" load previous model """
model_prev = Segmenter(backbone=opts.train.backbone, num_classes=list(opts.num_classes)[:-1],
pretrained=True)
else:
model_prev = None
get_param = model.get_param_groups()
if opts.curr_step > 0:
param_group = [{"params": get_param[0], "lr": opts.optimizer.learning_rate*opts.optimizer.inc_lr}, # Encoder
{"params": get_param[1], "lr": opts.optimizer.learning_rate*opts.optimizer.inc_lr}, # Norm
{"params": get_param[2], "lr": opts.optimizer.learning_rate*opts.optimizer.inc_lr}] # Decoder
else:
param_group = [{"params": get_param[0], "lr": opts.optimizer.learning_rate}, # Encoder
{"params": get_param[1], "lr": opts.optimizer.learning_rate}, # Norm
{"params": get_param[2], "lr": opts.optimizer.learning_rate}] # Decoder
# Initialize the optimizer with the parameter groups
optimizer = torch.optim.SGD(params=param_group,
lr=opts.optimizer.learning_rate,
weight_decay=opts.optimizer.weight_decay,
momentum=0.9,
nesterov=True)
def save_ckpt(path):
torch.save({
"model_state": model.module.state_dict(),
"optimizer_state": optimizer.state_dict(),
"best_score": best_score,
}, path)
if args.local_rank==0:
print("Model saved as %s" % path)
utils.mkdir('checkpoints')
# Restore
best_score = -1
cur_epochs = 0
if opts.overlap:
ckpt_str = "checkpoints/%s_%s_%s_step_%d_overlap.pth"
else:
ckpt_str = "checkpoints/%s_%s_%s_step_%d_disjoint.pth"
# model load from checkpoint if opts_curr_step == 0
if opts.curr_step==0 and (opts.ckpt is not None and os.path.isfile(opts.ckpt)):
checkpoint = torch.load(opts.ckpt, map_location=torch.device('cpu'))["model_state"]
model.load_state_dict(checkpoint, strict=True)
if args.local_rank==0:
print("Curr_step is zero. Model restored from %s" % opts.ckpt)
del checkpoint # free memory
# model load from checkpoint if opts_curr_step > 0
if opts.curr_step > 0:
opts.ckpt = ckpt_str % (opts.train.backbone, opts.dataset.name, opts.task, opts.curr_step-1)
if opts.ckpt is not None and os.path.isfile(opts.ckpt):
checkpoint = torch.load(opts.ckpt, map_location=torch.device('cpu'))["model_state"]
model_prev.load_state_dict(checkpoint, strict=True)
# Transfer the background class token if weight transfer is enabled
if opts.train.weight_transfer:
curr_head_num = len(model.decoder.cls_emb) - 1
class_token_param = model.state_dict()[f"decoder.cls_emb.{curr_head_num}"]
for i in range(opts.num_classes[-1]):
class_token_param[:, i] = checkpoint["decoder.cls_emb.0"]
checkpoint[f"decoder.cls_emb.{curr_head_num}"] = class_token_param
model.load_state_dict(checkpoint, strict=False)
if args.local_rank==0:
print("Model restored from %s" % opts.ckpt)
del checkpoint # free memory
else:
if args.local_rank==0:
print("[!] Retrain")
if opts.curr_step > 0:
model_prev.to(device)
model_prev.eval()
for param in model_prev.parameters():
param.requires_grad = False
if args.local_rank==0 and opts.curr_step>0:
print("----------- trainable parameters --------------")
for name, param in model.named_parameters():
if param.requires_grad:
print(name, param.shape)
print("-----------------------------------------------")
model = model.to(device)
model = DistributedDataParallel(model, device_ids=[opts.gpu_ids[args.local_rank]], find_unused_parameters=True)
model.train()
dataset_dict = get_dataset(opts)
train_sampler = DistributedSampler(dataset_dict['train'], shuffle=True)
train_loader = data.DataLoader(
dataset_dict['train'],
batch_size=opts.dataset.batch_size,
sampler=train_sampler,
num_workers=num_workers,
pin_memory=True,
drop_last=True,
prefetch_factor=4)
val_loader = data.DataLoader(
dataset_dict['val'], batch_size=opts.dataset.val_batch_size, shuffle=False, num_workers=num_workers, pin_memory=True)
test_loader = data.DataLoader(
dataset_dict['test'], batch_size=opts.dataset.val_batch_size, shuffle=False, num_workers=num_workers, pin_memory=True)
if args.local_rank==0:
print("Dataset: %s, Train set: %d, Val set: %d, Test set: %d" %
(opts.dataset.name, len(dataset_dict['train']), len(dataset_dict['val']), len(dataset_dict['test'])))
max_iters = opts.train.train_epochs * len(train_loader)
val_interval = max(100, max_iters // 10)
metrics = StreamSegMetrics(sum(opts.num_classes), dataset=opts.dataset.name)
train_sampler.set_epoch(0)
if args.local_rank==0:
print(f"... train epoch : {opts.train.train_epochs} , iterations : {max_iters} , val_interval : {val_interval}")
# Create a GradScaler for automatic mixed precision (AMP) training
scaler = torch.cuda.amp.GradScaler(enabled=opts.amp)
# Set up the loss function based on the configuration
if opts.train.loss_type == 'bce_loss':
criterion = utils.BCEWithLogitsLossWithIgnoreIndex(ignore_index=opts.dataset.ignore_index,
reduction='mean')
elif opts.train.loss_type == 'ce_loss':
criterion = torch.nn.CrossEntropyLoss(ignore_index=opts.dataset.ignore_index, reduction='mean')
# Set up additional loss functions for MBS if enabled
if opts.train.MBS == True:
# Separating Background-Class - output distillation, orthogonal loss
od_loss = utils.LabelGuidedOutputDistillation(reduction="mean", alpha=1.0).to(device)
ortho_loss = utils.OtrthogonalLoss(reduction="mean", classes=target_cls).to(device)
else:
od_loss = utils.KnowledgeDistillationLoss(reduction="mean", alpha=1.0).to(device)
ortho_loss = None
# Adaptive Feature Distillation
fd_loss = utils.AdaptiveFeatureDistillation(reduction="mean", alpha=1).to(device)
criterion = criterion.to(device)
cur_epochs = 0
avg_loss = AverageMeter()
for n_iter in range(max_iters):
try:
inputs, labels, _ = next(train_loader_iter)
except:
train_sampler.set_epoch(n_iter)
train_loader_iter = iter(train_loader)
inputs, labels, _ = next(train_loader_iter)
cur_epochs += 1
inputs = inputs.to(device, dtype=torch.float32, non_blocking=True)
labels = labels.to(device, dtype=torch.long, non_blocking=True)
origin_labels = labels.clone()
optimizer.zero_grad()
with torch.cuda.amp.autocast(enabled=opts.amp):
outputs, patches, cls_seg_feat, cls_token = model(inputs)
lod = torch.zeros(1).to(device)
lfd_patches = torch.zeros(1).to(device)
lfd = torch.zeros(1).to(device)
if opts.curr_step > 0:
with torch.no_grad():
outputs_prev, patches_prev, cls_seg_feat_prev, _ = model_prev(inputs)
if opts.train.loss_type == 'bce_loss':
pred_prob = torch.sigmoid(outputs_prev).detach()
else:
pred_prob = torch.softmax(outputs_prev, 1).detach()
pred_scores, pred_labels = torch.max(pred_prob, dim=1)
labels = torch.where((labels <= bg_label) & (pred_labels > bg_label) & (pred_scores >= opts.train.pseudo_thresh),
pred_labels,
labels)
if opts.train.MBS:
object_scores = torch.zeros(pred_prob.shape[0], 2, pred_prob.shape[2], pred_prob.shape[3]).to(device)
object_scores[:, 0] = pred_prob[:, 0]
object_scores[:, 1] = torch.sum(pred_prob[:, 1:], dim=1)
labels = torch.where((labels == 0) & (object_scores[:, 0] < object_scores[:, 1]),
opts.dataset.ignore_index,
labels)
if opts.train.MBS:
with torch.no_grad():
mask_origin = model_prev.get_masks()
HW = int(math.sqrt(patches.shape[1]))
label_temp = F.interpolate(labels.unsqueeze(1).float(), size=(HW, HW), mode='nearest').squeeze(1)
pred_score_mask = utils.make_scoremap(mask_origin, label_temp, target_cls, bg_label, ignore_index=opts.dataset.ignore_index)
pred_scoremap = pred_score_mask.squeeze().reshape(-1, HW*HW)
lfd_patches = fd_loss(patches.unsqueeze(1), patches_prev.unsqueeze(1), weights=pred_scoremap.unsqueeze(-1).unsqueeze(1))
else:
lfd_patches = fd_loss(patches, patches_prev, weights=1)
lfd = lfd_patches + fd_loss(cls_seg_feat[:,:-len(target_cls)], cls_seg_feat_prev, weights=1)
if opts.train.MBS:
lod = od_loss(outputs, outputs_prev, origin_labels) * opts.train.distill_args + ortho_loss(cls_token, weight=opts.num_classes[-1]/sum(opts.num_classes))
else:
lod = od_loss(outputs, outputs_prev) * opts.train.distill_args
seg_loss = criterion(outputs, labels.type(torch.long))
loss_total = seg_loss + lfd + lod
scaler.scale(loss_total).backward()
scaler.step(optimizer)
avg_loss.update(loss_total.item())
scaler.update()
if (n_iter+1) % opts.train.log_iters == 0 and args.local_rank==0:
delta, eta = cal_eta(time0, n_iter+1, max_iters)
lr = optimizer.param_groups[0]['lr']
logging.info("[Epochs: %d Iter: %d] Elasped: %s; ETA: %s; LR: %.3e; loss: %f; FD_loss: %f; OD_loss: %f"%(cur_epochs, n_iter+1, delta, eta, lr, avg_loss.avg, lfd.item(),
lod.item()))
writer.add_scalar(f'loss/train_{opts.curr_step}', loss_total.item(), n_iter+1)
writer.add_scalar(f'lr/train_{opts.curr_step}', lr, n_iter+1)
record_inputs, record_outputs, record_labels = imutils.tensorboard_image(inputs=inputs, outputs=outputs, labels=labels, dataset=opts.dataset.name)
writer.add_image(f"input/train_{opts.curr_step}", record_inputs, n_iter+1)
writer.add_image(f"output/train_{opts.curr_step}", record_outputs, n_iter+1)
writer.add_image(f"label/train_{opts.curr_step}", record_labels, n_iter+1)
if (n_iter+1) % val_interval == 0:
if args.local_rank==0:
logging.info('Validating...')
model.eval()
val_score = validate(opts=opts, model=model, loader=val_loader,
device=device, metrics=metrics)
if args.local_rank==0:
logging.info(metrics.to_str(val_score))
model.train()
writer.add_scalars(f'val/train_{opts.curr_step}', {"Overall Acc": val_score["Overall Acc"],
"Mean Acc": val_score["Mean Acc"],
"Mean IoU": val_score["Mean IoU"]}, n_iter+1)
class_iou = list(val_score['Class IoU'].values())
curr_score = np.mean( class_iou[curr_idx[0]:curr_idx[1]] )
if args.local_rank==0:
print("curr_val_score : %.4f" % (curr_score))
if curr_score > best_score and args.local_rank==0: # save best model
print("... save best ckpt : ", curr_score)
best_score = curr_score
save_ckpt(ckpt_str % (opts.train.backbone, opts.dataset.name, opts.task, opts.curr_step))
if args.local_rank==0:
print("... Training Done")
time.sleep(2)
if opts.curr_step >= 0:
if args.local_rank==0:
logging.info("... Testing Best Model")
best_ckpt = ckpt_str % (opts.train.backbone, opts.dataset.name, opts.task, opts.curr_step)
checkpoint = torch.load(best_ckpt, map_location=torch.device('cpu'))["model_state"]
model.module.load_state_dict(checkpoint, strict=True)
model.eval()
test_score = validate(opts=opts, model=model, loader=test_loader,
device=device, metrics=metrics)
if args.local_rank==0:
logging.info(metrics.to_str(test_score))
class_iou = list(test_score['Class IoU'].values())
class_acc = list(test_score['Class Acc'].values())
first_cls = len(get_tasks(opts.dataset.name, opts.task, 0))
if args.local_rank==0:
logging.info(f"...from 1 to {first_cls-1} : best/test_before_mIoU : %.6f" % np.mean(class_iou[1:first_cls]))
logging.info(f"...from {first_cls} to {len(class_iou)-1} best/test_after_mIoU : %.6f" % np.mean(class_iou[first_cls:]))
logging.info(f"...from 1 to {first_cls-1} : best/test_before_acc : %.6f" % np.mean(class_acc[1:first_cls]))
logging.info(f"...from {first_cls} to {len(class_iou)-1} best/test_after_acc : %.6f" % np.mean(class_acc[first_cls:]))
if __name__ == "__main__":
args = parser.parse_args()
opts = OmegaConf.load(args.config)
random.seed(opts.random_seed)
np.random.seed(opts.random_seed)
torch.manual_seed(opts.random_seed)
torch.cuda.manual_seed_all(opts.random_seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
opts.dataset.batch_size = opts.dataset.batch_size // len(opts.gpu_ids)
if args.local_rank == 0:
setup_logger(filename=str(args.log)+'.log')
logging.info('\nconfigs: %s' % opts)
start_step = opts.curr_step
total_step = len(get_tasks(opts.dataset.name, opts.task))
torch.cuda.set_device(opts.gpu_ids[args.local_rank])
dist.init_process_group(backend=args.backend,)
for step in range(start_step, total_step):
opts.curr_step = step
train(opts=opts)