-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathbackbones.py
313 lines (279 loc) · 14 KB
/
backbones.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
import torch
import torch.nn as nn
from args import args
import random # for manifold mixup
from functools import partial
class ConvBN2d(nn.Module):
def __init__(self, in_f, out_f, kernel_size = 3, stride = 1, padding = 1, groups = 1, outRelu = False, leaky = args.leaky):
super(ConvBN2d, self).__init__()
self.conv = nn.Conv2d(in_f, out_f, kernel_size = kernel_size, stride = stride, padding = padding, groups = groups, bias = False)
self.bn = nn.BatchNorm2d(out_f)
self.outRelu = outRelu
self.leaky = leaky
if leaky:
nn.init.kaiming_normal_(self.conv.weight, mode='fan_out', nonlinearity='leaky_relu')
nn.init.constant_(self.bn.weight, 1)
nn.init.constant_(self.bn.bias, 0)
def forward(self, x, lbda = None, perm = None):
y = self.bn(self.conv(x))
if lbda is not None:
y = lbda * y + (1 - lbda) * y[perm]
if self.outRelu:
if not self.leaky:
return torch.relu(y)
else:
return torch.nn.functional.leaky_relu(y, negative_slope = 0.1)
else:
return y
class BasicBlock(nn.Module):
def __init__(self, in_f, out_f, stride=1, in_expansion = None):
super(BasicBlock, self).__init__()
self.convbn1 = ConvBN2d(in_f, out_f, stride = stride, outRelu = True)
self.convbn2 = ConvBN2d(out_f, out_f)
self.shortcut = None if stride == 1 and in_f == out_f else ConvBN2d(in_f, out_f, kernel_size = 1, stride = stride, padding = 0)
def forward(self, x, lbda = None, perm = None):
y = self.convbn1(x)
z = self.convbn2(y)
if self.shortcut is not None:
z += self.shortcut(x)
else:
z += x
if lbda is not None:
z = lbda * z + (1 - lbda) * z[perm]
if args.leaky:
z = torch.nn.functional.leaky_relu(z, negative_slope = 0.1)
else:
z = torch.relu(z)
return z
class BasicBlock_RepVGG(nn.Module):
def __init__(self, in_f, out_f, model_use, stride=1):
super(BasicBlock_RepVGG, self).__init__()
self.model_use = model_use
self.in_channels = in_f
if self.model_use == "train" :
self.convbn3 = ConvBN2d(in_f, out_f, stride = stride, kernel_size = 3, padding = 1)
self.convbn1 = ConvBN2d(in_f, out_f, stride = stride, kernel_size = 1, padding = 0)
self.bn_identity = nn.BatchNorm2d(out_f) if out_f == in_f and stride == 1 else None
else :
self.conv_inference = nn.Conv2d(in_f, out_f, kernel_size = 3, stride = stride, padding = 1, bias = True)
self.nonlinearity = nn.ReLU()
def forward(self, x, lbda = None, perm = None):
if hasattr(self, 'conv_inference'):
return self.nonlinearity(self.conv_inference(x))
else :
y1 = self.convbn3(x)
y2 = self.convbn1(x)
if self.bn_identity is not None :
out = self.bn_identity(x)
else :
out = 0
z = y1 + y2 + out
if lbda is not None:
z = lbda * z + (1 - lbda) * z[perm]
if args.leaky:
z = torch.nn.functional.leaky_relu(z, negative_slope = 0.1)
else:
z = self.nonlinearity(z)
return z
class BottleneckBlock(nn.Module):
def __init__(self, in_f, out_f, in_expansion = 4, stride=1):
super(BottleneckBlock, self).__init__()
self.convbn1 = ConvBN2d(in_expansion*in_f, out_f, kernel_size = 1, padding = 0, outRelu = True)
self.convbn2 = ConvBN2d(out_f, out_f, stride = stride, outRelu = True)
self.convbn3 = ConvBN2d(out_f, 4*out_f, kernel_size = 1, padding = 0)
self.shortcut = None if stride == 1 and in_expansion == 4 else ConvBN2d(in_expansion*in_f, 4*out_f, kernel_size = 1, stride = stride, padding = 0)
def forward(self, x, lbda = None, perm = None):
y = self.convbn1(x)
z = self.convbn2(y)
out = self.convbn3(z)
if self.shortcut is not None:
out += self.shortcut(x)
else:
out += x
if lbda is not None:
out = lbda * out + (1 - lbda) * out[perm]
if args.leaky:
return torch.nn.functional.leaky_relu(out, negative_slope = 0.1)
else:
return torch.relu(out)
class RepVGG(nn.Module):
def __init__(self, block, blockList, a, b, featureMaps, model_use = "train"):
super(RepVGG, self).__init__()
features_input = min(64, int(featureMaps*a))
self.embed = BasicBlock_RepVGG(3, features_input, model_use, stride = 1)
blocks = []
for block_index, (nBlocks, channels) in enumerate(blockList):
if block_index != len(blockList)-1 :
for i in range(nBlocks):
blocks.append(block(features_input, int(channels*a), model_use, stride = 1 if i > 0 else 2))
features_input = int(channels*a)
else :
for i in range(nBlocks):
blocks.append(block(features_input, int(channels*b), model_use, stride = 1 if i > 0 else 2))
features_input = int(channels*b)
self.blocks = nn.ModuleList(blocks)
self.gap = nn.AdaptiveAvgPool2d(output_size=1)
def forward(self, x, mixup = None, lbda = None, perm = None):
mixup_layer = -1
if mixup == "mixup":
mixup_layer = 0
elif mixup == "manifold mixup":
mixup_layer = random.randint(0, len(self.blocks) + 1)
if mixup_layer == 0:
x = lbda * x + (1 - lbda) * x[perm]
if x.shape[1] == 1:
x = x.repeat(1,3,1,1)
if mixup_layer == 1:
y = self.embed(x, lbda, perm)
else:
y = self.embed(x)
for i, block in enumerate(self.blocks):
if mixup_layer == i + 2:
y = block(y, lbda, perm)
else:
y = block(y)
y = self.gap(y)
out = y.view(y.size(0), -1)
return out
class ResNet(nn.Module):
def __init__(self, block, blockList, featureMaps, large = False):
super(ResNet, self).__init__()
self.large = large
if not large:
self.embed = ConvBN2d(3, featureMaps, outRelu = True)
else:
self.embed = ConvBN2d(3, featureMaps, kernel_size=7, stride=2, padding=3, outRelu = True)
self.mp = nn.MaxPool2d(kernel_size = 3, stride = 2, padding = 1)
blocks = []
lastMult = 1
first = True
for (nBlocks, stride, multiplier) in blockList:
for i in range(nBlocks):
blocks.append(block(int(featureMaps * lastMult), int(featureMaps * multiplier), in_expansion = 1 if first else 4, stride = 1 if i > 0 else stride))
first = False
lastMult = multiplier
self.blocks = nn.ModuleList(blocks)
def forward(self, x, mixup = None, lbda = None, perm = None):
mixup_layer = -1
if mixup == "mixup":
mixup_layer = 0
elif mixup == "manifold mixup":
mixup_layer = random.randint(0, len(self.blocks) + 1)
if mixup_layer == 0:
x = lbda * x + (1 - lbda) * x[perm]
if x.shape[1] == 1:
x = x.repeat(1,3,1,1)
if mixup_layer == 1:
y = self.embed(x, lbda, perm)
else:
y = self.embed(x)
if self.large:
y = self.mp(y)
for i, block in enumerate(self.blocks):
if mixup_layer == i + 2:
y = block(y, lbda, perm)
else:
y = block(y)
y = y.mean(dim = list(range(2, len(y.shape))))
return y
class BasicBlockRN12(nn.Module):
def __init__(self, in_f, out_f):
super(BasicBlockRN12, self).__init__()
self.conv1 = ConvBN2d(in_f, out_f, outRelu = True, leaky = True)
self.conv2 = ConvBN2d(out_f, out_f, outRelu = True, leaky = True)
self.conv3 = ConvBN2d(out_f, out_f)
self.sc = ConvBN2d(in_f, out_f, kernel_size = 1, padding = 0)
def forward(self, x, lbda = None, perm = None):
y = self.conv1(x)
y = self.conv2(y)
y = self.conv3(y)
y += self.sc(x)
if lbda is not None:
y = lbda * y + (1 - lbda) * y[perm]
if args.leaky:
return torch.nn.functional.leaky_relu(y, negative_slope = 0.1)
else:
return torch.relu(y)
class ResNet12(nn.Module):
def __init__(self, featureMaps):
super(ResNet12, self).__init__()
self.block1 = BasicBlockRN12(3, featureMaps)
self.block2 = BasicBlockRN12(featureMaps, int(2.5 * featureMaps))
self.block3 = BasicBlockRN12(int(2.5 * featureMaps), 5 * featureMaps)
self.block4 = BasicBlockRN12(5 * featureMaps, 10 * featureMaps)
self.mp = nn.MaxPool2d(2)
def forward(self, x, mixup = None, lbda = None, perm = None):
mixup_layer = -1
if mixup == "mixup":
mixup_layer = 0
elif mixup == "manifold mixup":
mixup_layer = random.randint(0, 4)
if mixup_layer == 0:
x = lbda * x + (1 - lbda) * x[perm]
if x.shape[1] == 1:
x = x.repeat(1,3,1,1)
if mixup_layer == 1:
y = self.mp(self.block1(x, lbda, perm))
else:
y = self.mp(self.block1(x))
if mixup_layer == 2:
y = self.mp(self.block2(y, lbda, perm))
else:
y = self.mp(self.block2(y))
if mixup_layer == 3:
y = self.mp(self.block3(y, lbda, perm))
else:
y = self.mp(self.block3(y))
if mixup_layer == 4:
y = self.mp(self.block4(y, lbda, perm))
else:
y = self.mp(self.block4(y))
y = y.mean(dim = list(range(2, len(y.shape))))
return y
from vit import ViT
from vit_dino import vit_small, vit_base, vit_tiny
class Clip(nn.Module):
def __init__(self, device):
super(Clip, self).__init__()
import clip
self.backbone = clip.load("ViT-B/32", device=device)[0]
def forward(self, x, mixup = None, lbda = None, perm = None):
return self.backbone.encode_image(x)
def prepareBackbone():
large = False
patch_size = 0
projection = 'conv'
backbone = args.backbone
if args.backbone.lower()[-6:] == "_large":
large = True
backbone = args.backbone[:-6]
if 'vit' in args.backbone:
if '_linear' in args.backbone:
projection = 'linear'
backbone = args.backbone[:-7]
else:
backbone = args.backbone
patch_size = int(backbone.split('_')[-1])
backbone = '_'.join(backbone.split('_')[:-1])
return {
"repvgg_a0": lambda: (RepVGG(BasicBlock_RepVGG, [(2, 64), (4, 128), (14, 256), (1, 512)], 0.75, 2.5, args.feature_maps), int(512 * 2.5)),
"resnet18": lambda: (ResNet(BasicBlock, [(2, 1, 1), (2, 2, 2), (2, 2, 4), (2, 2, 8)], args.feature_maps, large = large), 8 * args.feature_maps),
"resnet20": lambda: (ResNet(BasicBlock, [(3, 1, 1), (3, 2, 2), (3, 2, 4)], args.feature_maps, large = large), 4 * args.feature_maps),
"resnet56": lambda: (ResNet(BasicBlock, [(9, 1, 1), (9, 2, 2), (9, 2, 4)], args.feature_maps, large = large), 4 * args.feature_maps),
"resnet56flat": lambda: (ResNet(BasicBlock, [(9, 1, 1), (9, 2, 1.41), (9, 2, 2)], args.feature_maps, large = large), 2 * args.feature_maps),
"resnet110": lambda: (ResNet(BasicBlock, [(18, 1, 1), (18, 2, 2), (18, 2, 4)], args.feature_maps, large = large), 4 * args.feature_maps),
"resnet50": lambda: (ResNet(BottleneckBlock, [(3, 1, 1), (4, 2, 2), (6, 2, 4), (3, 2, 8)], args.feature_maps, large = large), 8 * 4 * args.feature_maps),
"resnet12": lambda: (ResNet12(args.feature_maps), 10 * args.feature_maps),
"wrn28_10": lambda: (ResNet(BasicBlock, [(4, 1, 10), (4, 2, 20), (4, 2, 40)], args.feature_maps, large = large), 40 * args.feature_maps),
"wrn16_16": lambda: (ResNet(BasicBlock, [(2, 1, 16), (2, 2, 32), (2, 2, 64)], args.feature_maps, large = large), 64 * args.feature_maps),
"vit_tiny": lambda: (ViT(image_size = args.training_image_size, patch_size = patch_size, channels = 3, dim_head=64, dim = 192, depth = 12, heads = 3, mlp_dim = 192*4, pool=False, projection=projection, drop_path_rate=args.dropout, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6)), 192),
"vit_small": lambda: (ViT(image_size = args.training_image_size, patch_size = patch_size, channels = 3, dim_head=64, dim = 384, depth = 12, heads = 6, mlp_dim = 384*4, pool=False, projection=projection, drop_path_rate=args.dropout, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6)), 384),
"vit_base": lambda: (ViT(image_size = args.training_image_size, patch_size = patch_size, channels = 3, dim_head=64, dim = 768, depth = 12, heads = 12, mlp_dim = 768*4, pool=False, projection=projection, drop_path_rate=args.dropout, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6)), 768),
"vit_large": lambda: (ViT(image_size = args.training_image_size, patch_size = patch_size, channels = 3, dim_head=64, dim = 1024, depth = 24, heads = 16, mlp_dim = 1024*4, pool=False, projection=projection, drop_path_rate=args.dropout, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6)), 1024),
"vit_huge": lambda: (ViT(image_size = args.training_image_size, patch_size = patch_size, channels = 3, dim_head=64, dim = 1280, depth = 32, heads = 16, mlp_dim = 1280*4, pool=False, projection=projection, drop_path_rate=args.dropout, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6)), 1280),
"dino_vit_tiny": lambda: (vit_tiny(image_size = args.training_image_size, patch_size=patch_size, drop_path_rate=args.dropout), 192),
"dino_vit_small": lambda: (vit_small(image_size = args.training_image_size, patch_size=patch_size, drop_path_rate=args.dropout), 384),
"dino_vit_base": lambda: (vit_base(image_size = args.training_image_size, patch_size=patch_size, drop_path_rate=args.dropout), 768),
"clip": lambda: (Clip(args.device), 512)
}[backbone.lower()]()
print(" backbones,", end='')