-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathcreate_dataset_files.py
495 lines (446 loc) · 28.2 KB
/
create_dataset_files.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
from args import args
import torchvision
import json
import os
from torchvision import transforms, datasets
import torch
import numpy as np
from PIL import Image
import scipy.io
import tqdm
from collections import defaultdict
import pandas as pd
available_datasets = os.listdir(args.dataset_path)
print('Available datasets:', available_datasets)
# Read Graph for imagenet names and classes
with open(os.path.join('datasets', 'ilsvrc_2012_dataset_spec.json'), 'r') as file:
graph = json.load(file)
imagenet_class_names = {}
for subset in graph['split_subgraphs'].values():
for entity in subset:
if len(entity['children_ids']) == 0:
imagenet_class_names[entity['wn_id']] = entity['words']
all_results = defaultdict(dict)
### generate data for miniimagenet
if 'miniimagenetimages' in available_datasets:
for dataset in ["train","validation","test"]:
firstLine = True
classToIdx = {}
nClass = 0
result = {"data":[], "targets":[], "name":"miniimagenet_" + dataset, "num_classes":0, "name_classes":[]}
with open(args.dataset_path + "miniimagenetimages/" + dataset + ".csv") as f:
for row in f:
if firstLine:
firstLine = False
else:
fileName, classIdx = row.split(",")
classIdx = classIdx.split("\n")[0]
if classIdx in classToIdx.keys():
result["data"].append("miniimagenetimages/images/" + fileName)
result["targets"].append(classToIdx[classIdx])
else:
classToIdx[classIdx] = nClass
result["data"].append("miniimagenetimages/images/" + fileName)
result["targets"].append(nClass)
result["name_classes"].append(imagenet_class_names[classIdx])
nClass += 1
result["num_classes"] = nClass
result["num_elements_per_class"] = [600]*nClass
all_results["miniimagenet_" + dataset] = result
print("Done for miniimagenet_" + dataset + " with " + str(nClass) + " classes and " + str(len(result["data"])) + " samples (" + str(len(result["targets"])) + ")")
### generate data for tieredimagenet
if 'tieredimagenet' in available_datasets:
for dataset,folderName in [("train","train"),("validation","val"),("test","test")]:
directories = os.listdir(args.dataset_path + "tieredimagenet/" + folderName)
result = {"data":[], "targets":[], "name":"tieredimagenet_" + dataset, "num_classes":0, "name_classes":[]}
for i,classIdx in enumerate(directories):
num_elements_per_class = 0
for fileName in os.listdir(args.dataset_path + "tieredimagenet/" + folderName + "/" + classIdx):
result["data"].append("tieredimagenet/" + folderName + "/" + classIdx + "/" + fileName)
result["targets"].append(i)
num_elements_per_class += 1
result["num_elements_per_class"] = num_elements_per_class
result["name_classes"].append(imagenet_class_names[classIdx])
result["num_classes"] = i + 1
all_results["tieredimagenet_" + dataset] = result
print("Done for tieredimagenet_" + dataset + " with " + str(i+1) + " classes and " + str(len(result["data"])) + " samples (" + str(len(result["targets"])) + ")")
### generate data for cifarfs
if 'cifar_fs' in available_datasets:
for dataset,folderName in [("train","meta-train"),("validation","meta-val"),("test","meta-test")]:
directories = os.listdir(args.dataset_path + "cifar_fs/" + folderName)
result = {"data":[], "targets":[], "name":"cifarfs_" + dataset, "num_classes":0, "name_classes":[]}
for i,classIdx in enumerate(directories):
num_elements_per_class = 0
for fileName in os.listdir(args.dataset_path + "cifar_fs/" + folderName + "/" + classIdx):
result["data"].append("cifar_fs/" + folderName + "/" + classIdx + "/" + fileName)
result["targets"].append(i)
num_elements_per_class += 1
result["num_elements_per_class"] = num_elements_per_class
result["name_classes"].append(classIdx)
result["num_classes"] = i + 1
all_results["cifarfs_" + dataset] = result
print("Done for cifarfs_" + dataset + " with " + str(i+1) + " classes and " + str(len(result["data"])) + " samples (" + str(len(result["targets"])) + ")")
## generate data for mnist
try:
for dataset in ['train', 'test']:
result = {"data":[], "targets":[], "name":"mnist_" + dataset, "num_classes":0, "name_classes":[], "num_elements_per_class": []}
pytorchDataset = datasets.MNIST(args.dataset_path, train = dataset != "test", download = not ('MNIST' in available_datasets)) # download if not existing
targets = pytorchDataset.targets
for c in range(targets.max()):
result["num_elements_per_class"].append(len(torch.where(targets==c)[0]))
result["num_classes"] = len(result["num_elements_per_class"])+1
all_results['mnist_'+ dataset] = result
print("Done for mnist_" + dataset + " with " + str(result["num_classes"]) + " classes and " + str(len(result["data"])) + " samples (" + str(len(result["targets"])) + ")")
except:
pass
### generate data for imagenet metadatasets
try:
if 'imagenet' in available_datasets:
# Parse Graph
class_folders = {k:[p['wn_id'] for p in graph['split_subgraphs'][k] if len(p['children_ids']) == 0] for k in ['TRAIN', 'TEST', 'VALID']} # Existing classes
# Get duplicates from other datasets which should be removed from ImageNet
duplicates = []
duplicate_files = ['ImageNet_CUBirds_duplicates.txt', 'ImageNet_Caltech101_duplicates.txt', 'ImageNet_Caltech256_duplicates.txt']
for file in duplicate_files:
with open(os.path.join('datasets', 'metadatasets', 'ilsvrc_2012', file), 'r') as f:
duplicates_tmp = f.read().split('\n')
duplicates += [p.split('#')[0].replace(' ','') for p in duplicates_tmp if len(p)>0 and p[0] not in ['#']] # parse the duplicates files
# check which file exists:
path = os.path.join('imagenet', 'ILSVRC2012_img_train' if os.path.exists(os.path.join(args.dataset_path, 'imagenet', 'ILSVRC2012_img_train')) else 'train')
for dataset, folderName in [('train', 'TRAIN'), ('test', 'TEST'), ('validation','VALID')]:
result = {"data":[], "targets":[], "name":"metadataset_imagenet_" + dataset, "num_classes":0, "name_classes":[], "num_elements_per_class":[], "classIdx":{}}
for i, classIdx in enumerate(class_folders[folderName]):
num_elements_per_class = 0
for fileName in os.listdir(os.path.join(args.dataset_path, path, classIdx)):
if os.path.join(classIdx, fileName) not in duplicates:
result["data"].append(os.path.join(path, classIdx, fileName))
result["targets"].append(i)
num_elements_per_class +=1
result["name_classes"].append(imagenet_class_names[classIdx])
result["classIdx"][classIdx] = i
result["num_elements_per_class"].append(num_elements_per_class)
result["num_classes"] = i + 1
all_results["metadataset_imagenet_" + dataset] = result
print("Done for metadataset_imagenet_" + dataset + " with " + str(i+1) + " classes and " + str(len(result["data"])) + " samples (" + str(len(result["targets"])) + ")")
except Exception as e:
print(e)
def split_fn(json_path):
with open(json_path) as jsonFile:
split = json.load(jsonFile)
jsonFile.close()
return split
def get_data(jsonpath, image_dir, datasetName):
split = split_fn(jsonpath)
data ,num_classes, num_elts = {},{},{}
split = {"validation" if k == 'valid' else k:v for k,v in split.items()}
for index_subset, subset in enumerate(split.keys()):
data[subset] = {'data': [], 'targets' : [] , 'name': 'metadataset_' + datasetName + '_' +subset,'name_classes' : [],'num_elements_per_class':[], 'num_classes': []}
l_classes = split[subset]
data[subset]['num_classes'] = len(l_classes)
for index_class, cl in enumerate(l_classes):
cl_path = args.dataset_path + image_dir + cl
images = sorted(os.listdir(cl_path)) #Careful here you might mix the order (not sure that sorted is good enough)
data[subset]['num_elements_per_class'].append(len(images))
for index_image , im in enumerate(images):
data[subset]['data'].append( image_dir + cl +'/' + im)
data[subset]['targets'].append(index_class)
data[subset]['name_classes'].append(cl)
return data
def read_info_fungi():
info_sub={}
for subset in ['train', 'val']:
json_path = args.dataset_path + 'fungi/'+subset+'.json'
info_sub[subset] = split_fn(json_path)
L_id,L_fl ,L_ida,L_ca,L_imgid,L_idc,L_name,L_sup = [],[],[],[],[],[],[],[]
for subset in ['train', 'val']:
for x in info_sub[subset]['images']:
L_id.append(x['id'])
L_fl.append(x['file_name'])
for x in info_sub[subset]['annotations']:
L_ida.append(x['id'])
L_ca.append(x['category_id'])
L_imgid.append(x['image_id'])
for x in info_sub[subset]['categories']:
L_idc.append(x['id'])
L_name.append(x['name'])
L_sup.append(x['supercategory'])
np_ca = np.array(L_ca)
np_fl=np.array(L_fl)
np_idc = np.array(L_idc)
np_sup = np.array(L_sup)
return np_ca, np_fl, np_idc, np_sup
def get_data_fungi():
split = split_fn('datasets/metadatasets/fungi/fungi_splits.json' )
np_ca, np_fl, np_idc, np_sup = read_info_fungi()
data = {}
split = {"validation" if k == 'valid' else k:v for k,v in split.items()}
for index_subset, subset in enumerate(split.keys()):
data[subset] = {'data': [], 'targets' : [] , 'name': 'metadataset_fungi_'+subset,'name_classes' : [],'num_elements_per_class':[], 'num_classes': []}
l_classes = split[subset]
data[subset]['num_classes'] = len(l_classes)
for index_class, cl in enumerate(l_classes):
clx = int(split['train'][index_class][:4])
idx = np.where(np_ca==clx)[0]
data[subset]['num_elements_per_class'].append(idx.shape[0])
for index_image , im in enumerate(np_fl[idx]):
data[subset]['data'].append('/fungi/'+im)
data[subset]['targets'].append(index_class)
data[subset]['name_classes'].append(cl)
return data
def get_images_class_aircraft():
with open('datasets/metadatasets/aircraft/images_variant.txt') as f:
lines = f.readlines()
print(len(lines))
couples = [x.split(' ', maxsplit=1) for x in lines]
images = [x[0] for x in couples]
classes = [x[1][:-1] for x in couples]
dico_class = {}
dico_class = defaultdict(list)
for i ,x in enumerate(images):
cl = classes[i]
dico_class[cl].append(x)
return dico_class
def get_data_aircraft():
split = split_fn('datasets/metadatasets/aircraft/aircraft_splits.json')
dico_class = get_images_class_aircraft()
data = {}
split = {"validation" if k == 'valid' else k:v for k,v in split.items()}
for index_subset, subset in enumerate(split.keys()):
data[subset] = {'data': [], 'targets' : [] , 'name': 'metadataset_aircraft_'+subset,'name_classes' : [],'num_elements_per_class':[], 'num_classes': []}
l_classes = split[subset]
data[subset]['num_classes'] = len(l_classes)
for index_class, cl in enumerate(l_classes):
images = dico_class[cl]
if images != []:
data[subset]['num_elements_per_class'].append(len(images))
for index_image , im in enumerate(images):
data[subset]['data'].append('/fgvc-aircraft-2013b/data/images_cropped/'+im+'.jpg')
data[subset]['targets'].append(index_class)
data[subset]['name_classes'].append(cl)
else:
print(cl, 'not found')
return data
##### generate data for CUB and DTD
if 'CUB_200_2011' in available_datasets:
results_cub = get_data("./datasets/metadatasets/cub/cu_birds_splits.json", "CUB_200_2011/images/", 'cub')
if 'dtd' in available_datasets:
results_dtd = get_data('./datasets/metadatasets/dtd/dtd_splits.json', 'dtd/images/', 'dtd')
if 'fungi' in available_datasets:
results_fungi = get_data_fungi()
if 'fgvc-aircraft-2013b' in available_datasets:
results_aircraft = get_data_aircraft()
if 'mscoco' in available_datasets:
results_mscoco = get_data('./datasets/metadatasets/mscoco/mscoco_splits.json', 'mscoco/imgs_g/', 'mscoco')
for dataset in ['train', 'test', 'validation']:
if 'CUB_200_2011' in available_datasets:
all_results["metadataset_cub_" + dataset] = results_cub[dataset]
print("Done for metadataset_cub_" + dataset + " with " + str(results_cub[dataset]['num_classes']) + " classes and " + str(len(results_cub[dataset]["data"])) + " samples (" + str(len(results_cub[dataset]["targets"])) + ")")
if 'dtd' in available_datasets:
all_results["metadataset_dtd_" + dataset] = results_dtd[dataset]
print("Done for metadataset_dtd_" + dataset + " with " + str(results_dtd[dataset]['num_classes']) + " classes and " + str(len(results_dtd[dataset]["data"])) + " samples (" + str(len(results_dtd[dataset]["targets"])) + ")")
if 'fungi' in available_datasets:
all_results["metadataset_fungi_" + dataset] = results_fungi[dataset]
print("Done for metadataset_fungi_" + dataset + " with " + str(results_fungi[dataset]['num_classes']) + " classes and " + str(len(results_fungi[dataset]["data"])) + " samples (" + str(len(results_fungi[dataset]["targets"])) + ")")
if 'fgvc-aircraft-2013b' in available_datasets:
all_results["metadataset_aircraft_" + dataset] = results_aircraft[dataset]
print("Done for metadataset_aircraft_" + dataset + " with " + str(results_aircraft[dataset]['num_classes']) + " classes and " + str(len(results_aircraft[dataset]["data"])) + " samples (" + str(len(results_aircraft[dataset]["targets"])) + ")")
if 'mscoco' in available_datasets and dataset != 'train':
results_mscoco[dataset]['name'] = 'metadataset_mscoco_' + dataset
all_results["metadataset_mscoco_" + dataset] = results_mscoco[dataset]
print("Done for metadataset_mscoco_" + dataset + " with " + str(results_mscoco[dataset]['num_classes']) + " classes and " + str(len(results_mscoco[dataset]["data"])) + " samples (" + str(len(results_mscoco[dataset]["targets"])) + ")")
# generate data for omniglot
if 'omniglot' in available_datasets:
with open("./datasets/metadatasets/omniglot/"+"omniglot_dataset_spec.json") as jsonFile:
split = json.load(jsonFile)
jsonFile.close()
superclass_count = 0
for splitName,dataset in [("TRAIN","train"),("VALID","validation"),("TEST","test")]:
class_count = 0
result = {"data":[], "targets":[], "name":"metadataset_omniglot_" + dataset, "num_classes":0, "name_classes":[], "num_superclasses":0, "classes_per_superclass":defaultdict(list), "num_elements_per_class": []}
for superclass_id in range(superclass_count,superclass_count+split["superclasses_per_split"][splitName]):
result['num_superclasses'] = split["superclasses_per_split"][splitName]
superclass_name = split["superclass_names"][str(superclass_id)]
superclass_path = "omniglot/images_background/"+superclass_name+'/'
if dataset=='test':
superclass_path = "omniglot/images_evaluation/"+superclass_name+'/'
for class_name in os.listdir(args.dataset_path+'/'+superclass_path):
result['classes_per_superclass'][superclass_id-superclass_count].append(class_count)
class_path = superclass_path+class_name+'/'
result['num_classes'] +=1
result['name_classes'].append(superclass_name+'-'+class_name)
result['num_elements_per_class'].append(len(os.listdir(args.dataset_path+'/'+class_path)))
for filename in os.listdir(args.dataset_path+'/'+class_path):
result['data'].append(class_path+filename)
result['targets'].append(class_count)
class_count += 1
superclass_count += split["superclasses_per_split"][splitName]
all_results["metadataset_omniglot_" + dataset] = result
print("Done for metadataset_omniglot_ " + dataset + " with " + str(result['num_classes']) + " classes ")
## generate data for vgg_flower
if 'vgg_flower' in available_datasets:
labels = scipy.io.loadmat(args.dataset_path+'vgg_flower/'+'imagelabels.mat')['labels'][0]
with open('./datasets/metadatasets/vgg_flower/'+"vgg_flower_splits.json") as jsonFile:
split = json.load(jsonFile)
jsonFile.close()
split_rev = defaultdict(str)
for dataset,splitName in [("train","train"),("validation","valid"),("test","test")]:
all_results["metadataset_vgg_flower_"+dataset] = {"data":[], "targets":[], "name":"metadataset_vgg_flower_" + dataset, "num_classes":0, "name_classes":[], "dataset_targets":defaultdict(int), "num_elements_per_class":[]}
for class_name in split[splitName]:
split_rev[int(class_name[:3])] = dataset
all_results["metadataset_vgg_flower_"+dataset]['dataset_targets'][int(class_name[:3])] = all_results["metadataset_vgg_flower_"+dataset]['num_classes']
all_results["metadataset_vgg_flower_"+dataset]['name_classes'].append(class_name)
all_results["metadataset_vgg_flower_"+dataset]['num_classes']+=1
#print("Initialized for Vgg Flower " + dataset + " with " + str(all_results["metadataset_vgg_flower_"+dataset]['num_classes']) + " classes" )
for fileName in sorted(os.listdir(args.dataset_path + "vgg_flower/" + 'jpg')):
label = int(labels[int(fileName[7:11])-1])
dataset = split_rev[label]
all_results["metadataset_vgg_flower_"+dataset]['data'].append('vgg_flower/jpg/'+fileName)
all_results["metadataset_vgg_flower_"+dataset]['targets'].append(all_results["metadataset_vgg_flower_"+dataset]['dataset_targets'][label])
for dataset in ['train','validation','test']:
all_results["metadataset_vgg_flower_"+dataset]['num_elements_per_class']=all_results["metadataset_vgg_flower_"+dataset]['num_classes']*[0]
for i in all_results["metadataset_vgg_flower_"+dataset]['targets']:
all_results["metadataset_vgg_flower_"+dataset]['num_elements_per_class'][i]+= 1
print("Done for metadataset_vgg_flower_" + dataset + " with " + str(all_results["metadataset_vgg_flower_"+dataset]['num_classes']) + " classes ")
### generate data for quickdraw
if 'quickdraw' in available_datasets:
all_samples_path = os.path.join(args.dataset_path , "quickdraw",'all_samples')
with open("./datasets/metadatasets/quickdraw/quickdraw_splits.json") as jsonFile:
split = json.load(jsonFile)
jsonFile.close()
for dataset,splitName in [("train","train"),("validation","valid"),("test","test")]:
class_count = 0
directories = os.listdir(args.dataset_path + "quickdraw/")
result = {"data":[], "targets":[], "name":"metadataset_quickdraw_" + dataset, "num_classes":0, "name_classes":[], "num_elements_per_class": []}
for class_name in split[splitName]:
samples = np.load(args.dataset_path + "quickdraw/"+class_name +'.npy')
result['num_elements_per_class'].append(samples.shape[0])
result['num_classes'] +=1
result['name_classes'].append(class_name)
for i in range(samples.shape[0]):
class_path = all_samples_path+class_name+'/'
sample_path = os.path.join('quickdraw/all_samples/',class_name, str(i)+'.JPEG')
result['data'].append(sample_path)
result['targets'].append(class_count)
class_count += 1
all_results["metadataset_quickdraw_" + dataset] = result
print("Done for metadatasets_quickdraw_" + dataset + " with " + str(result['num_classes']) + " classes ")
### generate data for traffic_sign
if 'GTSRB' in available_datasets:
with open('./datasets/metadatasets/traffic_signs/'+"traffic_sign_splits.json") as jsonFile:
split = json.load(jsonFile)
jsonFile.close()
dataset = 'test'
directories = sorted(os.listdir(args.dataset_path + "GTSRB/Final_Training/Images/"))
result = {"data":[], "targets":[], "name":"metadataset_traffic_signs_" + dataset, "num_classes":0, "name_classes":[], "num_elements_per_class": []}
for class_dir in directories:
filenames = os.listdir(args.dataset_path + "GTSRB/Final_Training/Images/"+class_dir)
class_target = int(class_dir)
result['name_classes'].append(split['test'][result['num_classes']])
result['num_classes'] +=1
result['num_elements_per_class'].append(len(filenames))
for filename in filenames:
if filename.endswith('.ppm'):
result['data'].append("GTSRB/Final_Training/Images/"+class_dir+'/'+filename)
result['targets'].append(class_target)
all_results['metadataset_traffic_signs_'+dataset] = result
print('Done for metadataset_traffic_signs_' + dataset +'with '+str(result['num_classes'])+' classes and '+str(np.sum(np.array(result['num_elements_per_class']))) +' samples')
if 'audioset' in available_datasets:
### generate data for quickdraw
for dataset in ['train', 'test']:
result = {"data":[], "targets":[], "name":"audioset_" + dataset, "num_classes":0, "name_classes":[], "num_elements_per_class": []}
path = os.path.join(args.dataset_path, 'audioset', 'processed', dataset)
class_num_tracker = {}
num_classes = 0
for filename in os.listdir(path):
result['data'].append(os.path.join('audioset', 'processed', dataset, filename))
targets = list(map(int, filename.replace('.pt','').split('_')[1:]))
result['targets'].append(targets)
for c in targets:
if c in class_num_tracker.keys():
class_num_tracker[c]+=1
else:
class_num_tracker[c] = 1
num_classes = max(num_classes, max(targets))
result['num_elements_per_class'] = list(dict(sorted(class_num_tracker.items())).values())
result['num_classes'] = num_classes+1
all_results["audioset_" + dataset] = result
print("Done for audioset_" + dataset + " with " + str(result['num_classes']) + " classes and " + str(len(result["data"])) + " samples (" + str(len(result["targets"])) + ")")
if 'ESC-50' in available_datasets:
# Note that we use ESC-50 with the few shot learning setup as defined in the MetaAudio paper https://arxiv.org/abs/2204.02121 , so the datasets will be named esc50fs_train val and test
# We use here the baseline split from MetaAudio https://github.com/CHeggan/MetaAudio-A-Few-Shot-Audio-Classification-Benchmark/
# Read the metadata for the original dataset
df_meta = pd.read_csv(os.path.join(args.dataset_path,'ESC-50','meta','esc50.csv'))
class_splits = np.load(os.path.join(args.dataset_path,'ESC-50','ESC_paper_splits.npy'), allow_pickle=True)
train_classes, val_classes, test_classes = class_splits
df_allsplits = dict()
df_allsplits['train'] = pd.concat([df_meta[df_meta['category']==curcat] for curcat in train_classes])
df_allsplits['validation'] = pd.concat([df_meta[df_meta['category']==curcat] for curcat in val_classes])
df_allsplits['test'] = pd.concat([df_meta[df_meta['category']==curcat] for curcat in test_classes])
for dataset in ['train', 'validation','test']:
result = {"data":[], "targets":[], "name":"esc50fs_" + dataset, "num_classes":0, "name_classes":[], "num_elements_per_class": []}
curtargets = np.unique(df_allsplits[dataset]['target'])
for i,targ in enumerate(curtargets):
subDf = df_allsplits[dataset][df_allsplits[dataset]['target']==targ]
result['num_classes'] += 1
result['num_elements_per_class'].append(len(subDf))
for curfile in subDf['filename']:
name,ext = os.path.splitext(curfile)
filepath = os.path.join('ESC-50','audio','resampled',f"{name}.pt")
result['data'].append(filepath)
result['targets'].append(i)
result['name_classes'].append(subDf['category'].iloc[0])
all_results["esc50fs_" + dataset] = result
print("Done for esc50fs_" + dataset + " with " + str(result['num_classes']) + " classes and " + str(len(result["data"])) + " samples (" + str(len(result["targets"])) + ")")
def get_data_source_metaalbum(labels, path, source, SET):
L_classes =[]
for x in labels['CATEGORY']:
cl= os.path.join(path ,str(x))
if cl[10:] not in L_classes:
L_classes.append(cl[10:])
train_dic = {'data': [], 'targets' : [] , 'name': 'metaalbum_'+source,'name_classes' : L_classes,'num_elements_per_class':[0]*len(L_classes), 'num_classes': len(L_classes)}
for i in range(len(labels['FILE_NAME'])):
if 'DS_Store' not in labels['FILE_NAME'][i]:
train_dic['data'].append(os.path.join(path, source, 'images', labels['FILE_NAME'][i]))
class_id = L_classes.index(os.path.join(path, str(labels['CATEGORY'][i]))[10:]) ### PB conflict with others here
train_dic['targets'].append(class_id)
train_dic['num_elements_per_class'][class_id]+=1
return train_dic
def get_labels(SET):
#l = os.listdir(os.path.join(args.dataset_path, 'MetaAlbum', SET))
l = ['BCT', 'BRD', 'CRS', 'FLW', 'MD_MIX', 'PLK', 'PLT_VIL', 'RESISC', 'SPT', 'TEX']
l = list(map(lambda x: f'{x}_{SET.split("_")[-1]}', l))
labels =[]
for source in l:
if os.path.isdir(os.path.join(args.dataset_path,'MetaAlbum' ,SET, source)):
labels.append([pd.read_csv(os.path.join(args.dataset_path ,'MetaAlbum', SET, source ,'labels.csv')), source])
return labels
def get_data_metaalbum(SET):
labels = get_labels(SET)
l_data = []
sources =[]
for x in labels:
data = get_data_source_metaalbum(labels = x[0],path = os.path.join('MetaAlbum' , SET,) , source =x[1], SET=SET )
l_data.append(data)
sources.append(x[1])
return l_data, sources
def merge_data(list_data):
train_dic = {'data': [], 'targets' : [] , 'name': 'metaalbum','name_classes' : [],'num_elements_per_class':[], 'num_classes': 0}
for data in list_data:
train_dic['data']+=data['data']
train_dic['targets']+=[x + train_dic['num_classes'] for x in data['targets']]
train_dic['name_classes']+=data['name_classes']
train_dic['num_elements_per_class']+=data['num_elements_per_class']
train_dic['num_classes']+=data['num_classes']
return train_dic #{'TRAIN': train_dic}
if 'MetaAlbum' in available_datasets:
for set_size in ['Micro', 'Mini', 'Extended']:
data, sources = get_data_metaalbum('Set0_'+set_size)
for i,source in enumerate(sources):
all_results['metaalbum_'+source] = data[i]
print("Done for "+'metaalbum_' + source + " with " + str(data[i]['num_classes']) + " classes and " + str(len(data[i]["data"])) + " samples (" + str(len(data[i]["targets"])) + ")")
full_data = merge_data(data)
all_results['metaalbum_'+set_size] = full_data
print("Done for metaalbum_" + set_size+ " with " + str(full_data['num_classes']) + " classes and " + str(len(full_data["data"])) + " samples (" + str(len(full_data["targets"])) + ")")
f = open(args.dataset_path + "datasets.json", "w")
f.write(json.dumps(all_results))
f.close()