-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdataloaders.py
473 lines (434 loc) · 27.1 KB
/
dataloaders.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
### file to generate dataloaders
### for simplicity, we do not offer the choice to load the whole dataset in VRAM anymore
from torchvision import transforms, datasets
import random
from args import args
import torch
import torch.nn as nn
import os
import json
import numpy as np
from PIL import Image
import copy
from selfsupervised.selfsupervised import get_ssl_transform
from utils import *
from few_shot_evaluation import EpisodicGenerator
from augmentations import parse_transforms
### first define dataholder, which will be used as an argument to dataloaders
all_steps = [item for sublist in eval(args.steps) for item in sublist]
supervised = 'lr' in all_steps or 'rotations' in all_steps or 'mixup' in all_steps or 'manifold mixup' in all_steps or (args.few_shot and "M" in args.feature_processing) or args.save_features_prefix != "" or args.episodic
class DataHolder():
def __init__(self, data, targets, transforms, target_transforms=lambda x:x, opener=lambda x: Image.open(x).convert('RGB')):
self.data = data
if torch.is_tensor(data):
self.length = data.shape[0]
else:
self.length = len(self.data)
self.targets = targets
assert(self.length == len(targets))
self.transforms = transforms
self.target_transforms = target_transforms
self.opener = opener
def __getitem__(self, idx):
if isinstance(self.data[idx], str):
elt = self.opener(args.dataset_path + self.data[idx])
else:
elt = self.data[idx]
return self.transforms(elt), self.target_transforms(self.targets[idx])
def __len__(self):
return self.length
class CategoriesSampler():
"""
Sampler for episodic training
"""
def __init__(self, datasetName):
self.batch_size = args.batch_size
self.generator = EpisodicGenerator(datasetName=datasetName, dataset_path=args.dataset_path)
self.n_ways = args.few_shot_ways
self.n_shots = args.few_shot_shots
self.n_queries = args.few_shot_queries
self.episodic_iterations_per_epoch = args.episodic_iterations_per_epoch
def __len__(self):
return self.episodic_iterations_per_epoch
def __iter__(self):
"""
Return indices used in one batch
data is returned in a sequence of c1c1c1c1c2c2c2c2c3c3c3c3 with shots first then queries
"""
for _ in range(self.episodic_iterations_per_epoch):
episode = self.generator.sample_episode(ways=self.n_ways, n_shots=self.n_shots, n_queries=self.n_queries)
batch = []
for c, class_idx in enumerate(episode['choice_classes']):
offset = sum(self.generator.num_elements_per_class[:class_idx])
batch = batch + [offset+s for s in episode['shots_idx'][c]+episode['queries_idx'][c]]
batch = torch.tensor(batch)
yield batch
def dataLoader(dataholder, shuffle, datasetName, episodic):
if episodic :
sampler = CategoriesSampler(datasetName=datasetName)
return torch.utils.data.DataLoader(dataholder, num_workers = min(os.cpu_count(), 8), batch_sampler=sampler)
return torch.utils.data.DataLoader(dataholder, batch_size = args.batch_size, shuffle = shuffle, num_workers = min(os.cpu_count(), 8))
class TransformWrapper(object):
"""
Wrapper for different transforms.
"""
def __init__(self, all_transforms):
self.all_transforms = all_transforms
def __call__(self, image):
out = {}
for name, T in self.all_transforms.items():
out[name] = T(image)
return out
def get_transforms(image_size, datasetName, default_train_transforms, default_test_transforms):
if datasetName == 'train':
supervised_transform_str = args.training_transforms if len(args.training_transforms) > 0 else default_train_transforms
supervised_transform = parse_transforms(supervised_transform_str, image_size)
all_transforms = {}
if supervised:
all_transforms['supervised'] = transforms.Compose(supervised_transform)
all_transforms.update(get_ssl_transform(image_size, normalization=supervised_transform[-1]))
trans = TransformWrapper(all_transforms)
else:
trans = transforms.Compose(parse_transforms(args.test_transforms if len(args.test_transforms) > 0 else default_test_transforms, image_size))
return trans
def cifar10(datasetName):
pytorchDataset = datasets.CIFAR10(args.dataset_path, train = datasetName != "test", download = 'cifar-10-python.tar.gz' not in os.listdir(args.dataset_path))
data = torch.tensor(pytorchDataset.data).transpose(1,3).transpose(2,3).float() / 256.
targets = pytorchDataset.targets
if datasetName == "train":
image_size = args.training_image_size if args.training_image_size>0 else 32
else:
image_size = args.test_image_size if args.test_image_size>0 else 32
default_train_transforms = ['randomresizedcrop','randomhorizontalflip','cifar10norm']
if args.sample_aug == 1:
default_test_transforms = ['centercrop', 'cifar10norm']
else:
default_test_transforms = ['randomresizedcrop','cifar10norm']
trans = get_transforms(image_size, datasetName, default_train_transforms, default_test_transforms)
return {"dataloader": dataLoader(DataHolder(data, targets, trans, opener=lambda x:x), shuffle = datasetName == "train", episodic=args.episodic and datasetName == "train", datasetName="cifar10_"+datasetName), "name":"cifar10_" + datasetName, "num_classes":10, "name_classes": pytorchDataset.classes}
def cifar100(datasetName):
pytorchDataset = datasets.CIFAR100(args.dataset_path, train = datasetName != "test", download = 'cifar-100-python.tar.gz' not in os.listdir(args.dataset_path))
data = torch.tensor(pytorchDataset.data).transpose(1,3).transpose(2,3).float() / 256.
targets = pytorchDataset.targets
if datasetName == "train":
image_size = args.training_image_size if args.training_image_size>0 else 32
else:
image_size = args.test_image_size if args.test_image_size>0 else 32
default_train_transforms = ['randomresizedcrop','randomhorizontalflip', 'cifar100norm']
if args.sample_aug == 1:
default_test_transforms = ['centercrop', 'cifar100norm']
else:
default_test_transforms = ['randomresizedcrop', 'cifar100norm']
trans = get_transforms(image_size, datasetName, default_train_transforms, default_test_transforms)
return {"dataloader": dataLoader(DataHolder(data, targets, trans, opener=lambda x:x), shuffle = datasetName == "train", episodic=args.episodic and datasetName == "train", datasetName="cifar100_"+datasetName), "name":"cifar100_" + datasetName, "num_classes":100, "name_classes": pytorchDataset.classes}
def miniimagenet(datasetName):
f = open(args.dataset_path + "datasets.json")
all_datasets = json.loads(f.read())
f.close()
dataset = all_datasets["miniimagenet_" + datasetName]
if datasetName == "train":
image_size = args.training_image_size if args.training_image_size>0 else 84
else:
image_size = args.test_image_size if args.test_image_size>0 else 84
default_train_transforms = ['randomresizedcrop','colorjitter', 'randomhorizontalflip', 'totensor', 'miniimagenetnorm']
if args.sample_aug == 1:
default_test_transforms = ['resize_92/84', 'centercrop', 'totensor', 'miniimagenetnorm']
else:
default_test_transforms = ['randomresizecrop', 'totensor', 'miniimagenetnorm']
trans = get_transforms(image_size, datasetName, default_train_transforms, default_test_transforms)
return {"dataloader": dataLoader(DataHolder(dataset["data"], dataset["targets"], trans), shuffle = datasetName == "train", episodic=args.episodic and datasetName == "train", datasetName="miniimagenet_"+datasetName), "name":dataset["name"], "num_classes":dataset["num_classes"], "name_classes": dataset["name_classes"]}
def tieredimagenet(datasetName):
f = open(args.dataset_path + "datasets.json")
all_datasets = json.loads(f.read())
f.close()
dataset = all_datasets["tieredimagenet_" + datasetName]
if datasetName == "train":
image_size = args.training_image_size if args.training_image_size>0 else 84
else:
image_size = args.test_image_size if args.test_image_size>0 else 84
default_train_transforms = ['randomresizedcrop','colorjitter', 'randomhorizontalflip', 'totensor', 'miniimagenetnorm']
if args.sample_aug == 1:
default_test_transforms = ['resize_92/84', 'centercrop', 'totensor', 'miniimagenetnorm']
else:
default_test_transforms = ['randomresizecrop', 'totensor', 'miniimagenetnorm']
trans = get_transforms(image_size, datasetName, default_train_transforms, default_test_transforms)
return {"dataloader": dataLoader(DataHolder(dataset["data"], dataset["targets"], trans), shuffle = datasetName == "train", episodic=args.episodic and datasetName == "train", datasetName="tieredimagenet_"+datasetName), "name":dataset["name"], "num_classes":dataset["num_classes"], "name_classes": dataset["name_classes"]}
def cifarfs(datasetName):
f = open(args.dataset_path + "datasets.json")
all_datasets = json.loads(f.read())
f.close()
dataset = all_datasets["cifarfs_" + datasetName]
if datasetName == "train":
image_size = args.training_image_size if args.training_image_size>0 else 32
else:
image_size = args.test_image_size if args.test_image_size>0 else 32
default_train_transforms = ['randomresizedcrop','colorjitter', 'randomhorizontalflip', 'totensor', 'imagenetnorm']
if args.sample_aug == 1:
default_test_transforms = ['resize_115/100', 'centercrop', 'totensor', 'imagenetnorm']
else:
default_test_transforms = ['randomresizecrop', 'totensor', 'imagenetnorm']
trans = get_transforms(image_size, datasetName, default_train_transforms, default_test_transforms)
return {"dataloader": dataLoader(DataHolder(dataset["data"], dataset["targets"], trans), shuffle = datasetName == "train", episodic=args.episodic and datasetName == "train", datasetName="cifarfs_"+datasetName), "name":dataset["name"], "num_classes":dataset["num_classes"], "name_classes": dataset["name_classes"]}
def imagenet(datasetName):
if datasetName == "train":
image_size = args.training_image_size if args.training_image_size>0 else 224
else:
image_size = args.test_image_size if args.test_image_size>0 else 224
default_train_transforms = ['randomresizedcrop','randomhorizontalflip', 'totensor', 'imagenetnorm']
if args.sample_aug == 1:
default_test_transforms = ['resize_256/224', 'centercrop', 'totensor', 'imagenetnorm']
else:
default_test_transforms = ['randomresizedcrop', 'totensor', 'imagenetnorm']
trans = get_transforms(image_size, datasetName, default_train_transforms, default_test_transforms)
pytorchDataset = datasets.ImageNet(args.dataset_path + "/imagenet", split = "train" if datasetName != "test" else "val", transform = trans)
return {"dataloader": dataLoader(pytorchDataset, shuffle = datasetName == "train", episodic=args.episodic and datasetName == "train", datasetName="imagenet_"+datasetName), "name":"imagenet_" + datasetName, "num_classes":1000, "name_classes": pytorchDataset.classes}
def metadataset(datasetName, name):
"""
Generic function to load a dataset from the Meta-Dataset v1.0
"""
f = open(args.dataset_path + "datasets.json")
all_datasets = json.loads(f.read())
f.close()
dataset = all_datasets[name+"_" + datasetName]
if datasetName == "train":
image_size = args.training_image_size if args.training_image_size>0 else 126
else:
image_size = args.test_image_size if args.test_image_size>0 else 126
default_train_transforms = ['metadatasettotensor', 'biresize', 'metadatasetnorm']
if args.sample_aug == 1:
default_test_transforms = ['metadatasettotensor', 'biresize', 'metadatasetnorm']
else:
default_test_transforms = ['metadatasettotensor', 'randomresizedcrop', 'biresize', 'metadatasetnorm']
trans = get_transforms(image_size, datasetName, default_train_transforms, default_test_transforms)
return {"dataloader": dataLoader(DataHolder(dataset["data"], dataset["targets"], trans), shuffle = datasetName == "train", episodic=args.episodic and datasetName == "train", datasetName=name+"_"+datasetName), "name":dataset["name"], "num_classes":dataset["num_classes"], "name_classes": dataset["name_classes"]}
def metadataset_imagenet_v2():
f = open(args.dataset_path + "datasets.json")
all_datasets = json.loads(f.read())
f.close()
dataset_train = all_datasets["metadataset_imagenet_train"]
dataset_validation = all_datasets["metadataset_imagenet_validation"]
dataset_test = all_datasets["metadataset_imagenet_test"]
data = dataset_train["data"] + dataset_validation["data"] + dataset_test["data"]
train_classes = dataset_train["num_classes"]
validation_classes = dataset_validation["num_classes"]
test_classes = dataset_test["num_classes"]
num_classes = train_classes + validation_classes + test_classes
targets = dataset_train["targets"] + [t + train_classes for t in dataset_validation["targets"]] + [t + train_classes + validation_classes for t in dataset_test["targets"]]
image_size = args.training_image_size if args.training_image_size>0 else 126
default_train_transforms = ['metadatasettotensor','metadatasetnorm', 'beresize']
trans = get_transforms(image_size, "train", default_train_transforms, [])
return {"dataloader": dataLoader(DataHolder(data, targets, trans), shuffle = True, episodic=args.episodic, datasetName="metadataset_imagenet_train_v2"), "name":"metadataset_imagenet_v2_train", "num_classes":num_classes, "name_classes": dataset_train["name_classes"]+dataset_validation["name_classes"]+dataset_test["name_classes"]}
def mnist(datasetName):
pytorchDataset = datasets.MNIST(args.dataset_path, train = datasetName != "test", download = 'MNIST' not in os.listdir(args.dataset_path))
data = pytorchDataset.data.clone().unsqueeze(1).float() / 256.
targets = pytorchDataset.targets
if datasetName == "train":
image_size = args.training_image_size if args.training_image_size>0 else 28
else:
image_size = args.test_image_size if args.test_image_size>0 else 28
default_transform = ['mnistnorm']
trans = get_transforms(image_size, datasetName, default_transform, default_transform)
return {"dataloader": dataLoader(DataHolder(data, targets, trans), shuffle = datasetName == "train", episodic=args.episodic and datasetName == "train", datasetName="mnist_"+datasetName), "name": "mnist_" + datasetName, "num_classes": 10, "name_classes": list(range(10))}
def fashionMnist(datasetName):
pytorchDataset = datasets.FashionMNIST(args.dataset_path, train = datasetName != "test", download = 'FashionMNIST' not in os.listdir(args.dataset_path))
data = pytorchDataset.data.clone().unsqueeze(1).float() / 256.
targets = pytorchDataset.targets
normalization = transforms.Normalize((0.2849,), (0.3516,))
if datasetName == "train":
image_size = args.training_image_size if args.training_image_size>0 else 28
else:
image_size = args.test_image_size if args.test_image_size>0 else 28
default_transform = ['totensor', 'mnistnorm']
trans = get_transforms(image_size, datasetName, default_transform, default_transform)
return {"dataloader": dataLoader(DataHolder(data, targets, trans), shuffle = datasetName == "train", episodic=args.episodic and datasetName == "train", datasetName="fashionmnist_"+datasetName), "name": "fashion-mnist_" + datasetName, "num_classes": 10, "name_classes": pytorchDataset.classes}
def audioset(datasetName):
def randcrop(tensor, duration):
freq = 32000 * duration
N = tensor.shape[0]
if N<freq:
new_tensor = torch.zeros(freq)
new_tensor[:N] = tensor
return new_tensor
if N > freq:
i = random.randint(0,N - freq - 1)
else:
i = 0
return tensor[i:i+freq]
f = open(args.dataset_path + "datasets.json")
all_datasets = json.loads(f.read())
f.close()
dataset = all_datasets["audioset_" + datasetName]
data = dataset["data"]
targets = dataset["targets"]
trans = transforms.Compose([lambda x : randcrop(x.mean(dim=0), duration = 1).unsqueeze(0).to(dtype=torch.float), lambda x: x + 0.1 * torch.randn_like(x), lambda x: -1 * x if random.random() < 0.5 else x])
test_trans = lambda x : randcrop(x.mean(dim=0), duration = 1).unsqueeze(0).to(dtype=torch.float)
target_trans = lambda x: torch.zeros(dataset['num_classes']).scatter_(0,torch.Tensor(x).long(), 1.)
opener = lambda x: torch.load(x, map_location='cpu')
return {"dataloader": dataLoader(DataHolder(data, targets, trans if datasetName == "train" else test_trans, target_transforms=target_trans, opener=opener), shuffle = datasetName == "train"), "name":dataset['name'], "num_classes":dataset["num_classes"], "name_classes": dataset["name_classes"]}
def esc50(datasetName):
f = open(args.dataset_path + "datasets.json")
all_datasets = json.loads(f.read())
f.close()
dataset = all_datasets["esc50fs_" + datasetName]
data = dataset["data"]
targets = dataset["targets"]
trans = lambda x : x.unsqueeze(0)
test_trans = lambda x : x.unsqueeze(0)
opener = lambda x: torch.load(x, map_location='cpu')
return {"dataloader": dataLoader(DataHolder(data, targets, trans if datasetName == "train" else test_trans, opener=opener), shuffle = datasetName == "train"),
"name":dataset['name'],
"num_classes":dataset["num_classes"],
"name_classes": dataset["name_classes"]}
def metaalbum(source, is_train=False):
f = open(args.dataset_path + "datasets.json")
all_datasets = json.loads(f.read())
f.close()
dataset = all_datasets["metaalbum_"+source]
data = dataset["data"]
targets = dataset["targets"]
normalization = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
image_size = 224 if args.backbone == "resnet50" else 126
if is_train:
supervised_transform = transforms.Compose([
transforms.RandomResizedCrop(image_size), transforms.ToTensor(), normalization, GaussianNoise(0.1533), transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4), transforms.RandomHorizontalFlip()])
all_transforms = {}
if 'lr' in all_steps or 'rotations' in all_steps or 'mixup' in all_steps or 'manifold mixup' in all_steps or (args.few_shot and "M" in args.feature_processing) or args.save_features_prefix != "":
all_transforms['supervised'] = supervised_transform
all_transforms.update(get_ssl_transform(image_size, normalization))
trans = TransformWrapper(all_transforms)
else:
if args.sample_aug == 1:
trans = transforms.Compose([transforms.Resize(image_size), transforms.CenterCrop(image_size), transforms.ToTensor(), normalization])
else:
trans = transforms.Compose([transforms.RandomResizedCrop(image_size), transforms.ToTensor(), normalization])
return {"dataloader": dataLoader(DataHolder(data, targets, trans), shuffle = is_train), "name":dataset['name'], "num_classes":dataset["num_classes"], "name_classes": dataset["name_classes"]}
def prepareDataLoader(name, is_train=False):
if isinstance(name, str):
name = [name]
result = []
train_trans_results = []
dataset_options = {
"cifar10_train": lambda: cifar10("train"),
"cifar10_validation": lambda: cifar10("validation"),
"cifar10_test": lambda: cifar10("test"),
"cifar100_train": lambda: cifar100("train"),
"cifar100_validation": lambda: cifar100("validation"),
"cifar100_test": lambda: cifar100("test"),
"mnist_train": lambda: mnist("train"),
"mnist_validation": lambda: mnist("validation"),
"mnist_test": lambda: mnist("test"),
"fashion-mnist_train": lambda: fashionMnist("train"),
"fashion-mnist_validation": lambda: fashionMnist("validation"),
"fashion-mnist_test": lambda: fashionMnist("test"),
"imagenet_train": lambda: imagenet("train"),
"imagenet_validation": lambda: imagenet("validation"),
"imagenet_test": lambda: imagenet("test"),
"miniimagenet_train": lambda: miniimagenet("train"),
"miniimagenet_validation": lambda: miniimagenet("validation"),
"miniimagenet_test": lambda: miniimagenet("test"),
"tieredimagenet_train": lambda: tieredimagenet("train"),
"tieredimagenet_validation": lambda: tieredimagenet("validation"),
"tieredimagenet_test": lambda: tieredimagenet("test"),
"cifarfs_train": lambda: cifarfs("train"),
"cifarfs_validation": lambda: cifarfs("validation"),
"cifarfs_test": lambda: cifarfs("test"),
"metadataset_imagenet_train": lambda: metadataset("train", "metadataset_imagenet"),
"metadataset_imagenet_validation": lambda: metadataset("validation", "metadataset_imagenet"),
"metadataset_imagenet_test": lambda: metadataset("test", "metadataset_imagenet"),
"metadataset_cub_train": lambda: metadataset("train", "metadataset_cub"),
"metadataset_cub_validation": lambda: metadataset("validation", "metadataset_cub"),
"metadataset_cub_test": lambda: metadataset("test", "metadataset_cub"),
"metadataset_dtd_train": lambda: metadataset("train", "metadataset_dtd"),
"metadataset_dtd_validation": lambda: metadataset("validation", "metadataset_dtd"),
"metadataset_dtd_test": lambda: metadataset("test", "metadataset_dtd"),
"metadataset_fungi_train": lambda: metadataset("train", "metadataset_fungi"),
"metadataset_fungi_validation": lambda: metadataset("validation", "metadataset_fungi"),
"metadataset_fungi_test": lambda: metadataset("test", "metadataset_fungi"),
"metadataset_aircraft_train": lambda: metadataset("train", "metadataset_aircraft"),
"metadataset_aircraft_validation": lambda: metadataset("validation", "metadataset_aircraft"),
"metadataset_aircraft_test": lambda: metadataset("test", "metadataset_aircraft"),
"metadataset_mscoco_train": lambda: metadataset("train", "metadataset_mscoco"),
"metadataset_mscoco_validation": lambda: metadataset("validation", "metadataset_mscoco"),
"metadataset_mscoco_test": lambda: metadataset("test", "metadataset_mscoco"),
"metadataset_cub_train": lambda: metadataset("train", "metadataset_cub"),
"metadataset_cub_validation": lambda: metadataset("validation", "metadataset_cub"),
"metadataset_cub_test": lambda: metadataset("test", "metadataset_cub"),
"metadataset_omniglot_train": lambda: metadataset("train", "metadataset_omniglot"),
"metadataset_omniglot_validation": lambda: metadataset("validation", "metadataset_omniglot"),
"metadataset_omniglot_test": lambda: metadataset("test", "metadataset_omniglot"),
"metadataset_quickdraw_train": lambda: metadataset("train", "metadataset_quickdraw"),
"metadataset_quickdraw_validation": lambda: metadataset("validation", "metadataset_quickdraw"),
"metadataset_quickdraw_test": lambda: metadataset("test", "metadataset_quickdraw"),
"metadataset_vgg_flower_train": lambda: metadataset("train", "metadataset_vgg_flower"),
"metadataset_vgg_flower_validation": lambda: metadataset("validation", "metadataset_vgg_flower"),
"metadataset_vgg_flower_test": lambda: metadataset("test", "metadataset_vgg_flower"),
"metadataset_traffic_signs_train": lambda: metadataset("train", "metadataset_traffic_signs"),
"metadataset_traffic_signs_validation": lambda: metadataset("validation", "metadataset_traffic_signs"),
"metadataset_traffic_signs_test": lambda: metadataset("test", "metadataset_traffic_signs"),
"metadataset_imagenet_v2_train": lambda: metadataset_imagenet_v2(),
"audioset_train":lambda: audioset("train"),
"audioset_test":lambda: audioset("test"),
"esc50fs_train":lambda: esc50("train"),
"esc50fs_val":lambda: esc50("validation"),
"esc50fs_test":lambda: esc50("test"),
"metaalbum_micro":lambda: metaalbum("Micro", is_train=is_train),
"metaalbum_mini":lambda: metaalbum("Mini", is_train=is_train),
"metaalbum_extended":lambda: metaalbum("Extended", is_train=is_train),
}
# Adding Meta albums
for setting in ['Micro', 'Macro', 'Extended']:
for album in ['BCT', 'BRD', 'CRS', 'FLW', 'MD_MIX', 'PLK', 'PLT_VIL', 'RESISC', 'SPT', 'TEX']:
dataset_options[f'metaalbum_{album.lower()}_{setting.lower()}'] = lambda: metaalbum(f'{album}_{setting}', is_train=is_train)
for elt in name:
assert elt.lower() in dataset_options.keys(), f'The chosen dataset "{elt}" is not existing, please provide a valid option: \n {list(dataset_options.keys())}'
result.append(dataset_options[elt.lower()]())
return result
def checkSize(dataset):
if 'cifar' in dataset:
image_size = 32
elif 'mnist' in dataset or 'omniglot' in dataset:
image_size = 28
elif 'imagenet' in dataset and 'metadataset' not in dataset and 'miniimagenet' not in dataset:
image_size = 224
elif 'metadataset' in dataset:
image_size = 126
elif 'miniimagenet' in dataset or 'tieredimagenet' in dataset or 'cub' in dataset:
image_size = 84
return image_size
if args.training_dataset != "":
try:
eval(args.training_dataset)
trainSet = prepareDataLoader(eval(args.training_dataset), is_train=True)
if args.training_image_size == -1:
args.training_image_size = checkSize(eval(args.training_dataset)[0])
except NameError:
trainSet = prepareDataLoader(args.training_dataset, is_train=True)
if args.training_image_size == -1:
args.training_image_size = checkSize(args.training_dataset)
else:
trainSet = []
if args.validation_dataset != "":
try:
eval(args.validation_dataset)
validationSet = prepareDataLoader(eval(args.validation_dataset), is_train=False)
if args.test_image_size == -1:
args.test_image_size = checkSize(eval(args.validation_dataset)[0])
except NameError:
validationSet = prepareDataLoader(args.validation_dataset, is_train=False)
if args.test_image_size == -1:
args.test_image_size = checkSize(args.validation_dataset)
else:
validationSet = []
if args.test_dataset != "":
try:
eval(args.test_dataset)
testSet = prepareDataLoader(eval(args.test_dataset), is_train=False)
if args.test_image_size == -1:
args.test_image_size = checkSize(eval(args.test_dataset)[0])
except NameError:
testSet = prepareDataLoader(args.test_dataset, is_train=False)
if args.test_image_size == -1:
args.test_image_size = checkSize(args.test_dataset)
else:
testSet = []
print(" dataloaders,", end='')