-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate.py
45 lines (36 loc) · 1.27 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
from statistics import mean
from igraph import Graph
from scipy.stats import norm
from helpers import frequencies
import numpy as np
# Number of runs per parameter combination
runs = range(100)
# network sizes to generate
noderange = list(range(50, 10001, 50))
# number of edges each node generates when being added to the network
edgerange = range(2, 25, 2)
alldata = []
try:
for nodes in noderange:
for edges in edgerange:
if edges >= nodes:
break
ms = []
ss = []
for run in runs:
freq = frequencies(nodes, edges)
x = list(range(len(freq)))
# use fixed size frequency representation
expandeddata = np.repeat(x, np.array([int(_ * 10000) for _ in freq]).astype(int))
m, s = norm.fit(expandeddata)
ms.append(m)
ss.append(s)
alldata.append((nodes, param, ms, ss))
# progress indication
print(nodes, param, mean(ms), mean(ss))
except KeyboardInterrupt:
# allows storing of results after interrupt through ctrl+c
pass
from datetime import datetime
import pickle
pickle.dump(alldata, open("normal_approx_"+datetime.now().strftime("%Y-%m-%d-%H_%M_%S")+".p", "wb"))