-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
130 lines (105 loc) · 2.4 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import numpy as np
def logx(x, a, b, c):
return a*np.log(x*b)+c
def expx(x, a, b, c):
return c+(a/np.exp(b*x))
def model_1(x, a, b, c, d, e):
n, k = x
tb = b*n
te = e*k
td = d/np.exp(te)
ta = a*np.log(tb)
tc = c+ta+td
return tc
def M_1(n, k):
a = 0.41681823
b = 0.85906102
c = -0.47034162
d = 4.39147762
e = 0.31129515
return model_1((n,k), a, b, c, d, e)
def S_1(n, k):
a = 0.03452225
b = 0.92507561
c = 0.18967811
d = 1.22202939
e = 0.30130025
return model_1((n,k), a, b, c, d, e)
def model_2(x, a, b, c, d, e, f, g):
n, k = x
bn = b*n
ck = c*k
en = e*n
albn = a*np.log(bn)
dlen = d*np.log(en)
eck = np.exp(ck)
t1 = albn/eck
t2 = dlen
t3 = f/eck
t4 = g
return t1+t2+t3+t4
def M_2(n, k):
a = 0.5950798
b = 2.13501329
c = 0.31483198
d = 0.34168386
e = 1.62626029
f = 0.24154007
g = -0.22447648
return model_2((n,k), a, b, c, d, e, f, g)
def S_2(n, k):
a = -6.40196224e-02
b = 1.00278958e+00
c = 2.97982577e-01
d = 4.32116618e-02
e = 3.47735365e+01
f = 1.61551054e+00
g = -2.21250089e-02
return model_2((n,k), a, b, c, d, e, f, g)
def model_3(x, a, b, c, d):
n, k = x
bn = b*n
ck = c*k
albn = a*np.log(bn)
eck = np.exp(ck)
t1 = albn/eck
t2 = d
return t1+t2
def M_3(n, k):
a = 1.08329634
b = 0.04169329
c = 0.15497249
d = 1.68079096
return model_3((n,k), a, b, c, d)
def S_3(n, k):
a = 5.69262827e-02
b = 3.07801334e+06
c = 2.95075272e-01
d = 4.00871794e-01
return model_3((n,k), a, b, c, d)
def model_4(x, xa, ya, xb, yb, xc, yc, ax, bx, ay, by, az, bz):
n, k = x
t1 = xa*np.log(xb*n)/np.exp(ya*k)
t2 = xa*yb*k/np.exp(ya*k)
t3 = xc/np.exp(yc*k)
t4 = ax*np.log(bx*n)/np.power(by*n, ay*k)
t5 = az*np.log(bz*n)
return t1-t2+t3+t4+t5
def M_4(n, k):
xa = 6.45905993e-01
ya = 3.52109407e-01
xb = 5.07293999e-09
yb = -3.01350292e+00
xc = 1.62610687e+01
yc = 6.23341960e-01
ax = 9.36642918e-01
bx = 9.84404369e-01
ay = 1.49133420e+00
by = 1.14214126e+00
az = 3.46738306e-01
bz = 5.78073547e-01
return model_4((n,k), xa, ya, xb, yb, xc, yc, ax, bx, ay, by, az, bz)
Ms = [M_1, M_2, M_3, M_4]
Ss = [S_1, S_2, S_3]
def prediction(n, k):
return (M_2(n,k),S_1(n,k))