forked from apache/spark
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfeature.py
executable file
·7786 lines (6878 loc) · 244 KB
/
feature.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from typing import (
cast,
overload,
Any,
Dict,
Generic,
List,
Optional,
Tuple,
TypeVar,
Union,
TYPE_CHECKING,
)
from pyspark import keyword_only, since
from pyspark.ml.linalg import _convert_to_vector, DenseMatrix, DenseVector, Vector
from pyspark.sql.dataframe import DataFrame
from pyspark.ml.param.shared import (
HasThreshold,
HasThresholds,
HasInputCol,
HasOutputCol,
HasInputCols,
HasOutputCols,
HasHandleInvalid,
HasRelativeError,
HasFeaturesCol,
HasLabelCol,
HasSeed,
HasNumFeatures,
HasStepSize,
HasMaxIter,
TypeConverters,
Param,
Params,
)
from pyspark.ml.util import JavaMLReadable, JavaMLWritable, try_remote_attribute_relation
from pyspark.ml.wrapper import JavaEstimator, JavaModel, JavaParams, JavaTransformer, _jvm
from pyspark.ml.common import inherit_doc
if TYPE_CHECKING:
from py4j.java_gateway import JavaObject
JM = TypeVar("JM", bound=JavaTransformer)
P = TypeVar("P", bound=Params)
__all__ = [
"Binarizer",
"BucketedRandomProjectionLSH",
"BucketedRandomProjectionLSHModel",
"Bucketizer",
"ChiSqSelector",
"ChiSqSelectorModel",
"CountVectorizer",
"CountVectorizerModel",
"DCT",
"ElementwiseProduct",
"FeatureHasher",
"HashingTF",
"IDF",
"IDFModel",
"Imputer",
"ImputerModel",
"IndexToString",
"Interaction",
"MaxAbsScaler",
"MaxAbsScalerModel",
"MinHashLSH",
"MinHashLSHModel",
"MinMaxScaler",
"MinMaxScalerModel",
"NGram",
"Normalizer",
"OneHotEncoder",
"OneHotEncoderModel",
"PCA",
"PCAModel",
"PolynomialExpansion",
"QuantileDiscretizer",
"RobustScaler",
"RobustScalerModel",
"RegexTokenizer",
"RFormula",
"RFormulaModel",
"SQLTransformer",
"StandardScaler",
"StandardScalerModel",
"StopWordsRemover",
"StringIndexer",
"StringIndexerModel",
"TargetEncoder",
"TargetEncoderModel",
"Tokenizer",
"UnivariateFeatureSelector",
"UnivariateFeatureSelectorModel",
"VarianceThresholdSelector",
"VarianceThresholdSelectorModel",
"VectorAssembler",
"VectorIndexer",
"VectorIndexerModel",
"VectorSizeHint",
"VectorSlicer",
"Word2Vec",
"Word2VecModel",
]
@inherit_doc
class Binarizer(
JavaTransformer,
HasThreshold,
HasThresholds,
HasInputCol,
HasOutputCol,
HasInputCols,
HasOutputCols,
JavaMLReadable["Binarizer"],
JavaMLWritable,
):
"""
Binarize a column of continuous features given a threshold. Since 3.0.0,
:py:class:`Binarize` can map multiple columns at once by setting the :py:attr:`inputCols`
parameter. Note that when both the :py:attr:`inputCol` and :py:attr:`inputCols` parameters
are set, an Exception will be thrown. The :py:attr:`threshold` parameter is used for
single column usage, and :py:attr:`thresholds` is for multiple columns.
.. versionadded:: 1.4.0
Examples
--------
>>> df = spark.createDataFrame([(0.5,)], ["values"])
>>> binarizer = Binarizer(threshold=1.0, inputCol="values", outputCol="features")
>>> binarizer.setThreshold(1.0)
Binarizer...
>>> binarizer.setInputCol("values")
Binarizer...
>>> binarizer.setOutputCol("features")
Binarizer...
>>> binarizer.transform(df).head().features
0.0
>>> binarizer.setParams(outputCol="freqs").transform(df).head().freqs
0.0
>>> params = {binarizer.threshold: -0.5, binarizer.outputCol: "vector"}
>>> binarizer.transform(df, params).head().vector
1.0
>>> binarizerPath = temp_path + "/binarizer"
>>> binarizer.save(binarizerPath)
>>> loadedBinarizer = Binarizer.load(binarizerPath)
>>> loadedBinarizer.getThreshold() == binarizer.getThreshold()
True
>>> loadedBinarizer.transform(df).take(1) == binarizer.transform(df).take(1)
True
>>> df2 = spark.createDataFrame([(0.5, 0.3)], ["values1", "values2"])
>>> binarizer2 = Binarizer(thresholds=[0.0, 1.0])
>>> binarizer2.setInputCols(["values1", "values2"]).setOutputCols(["output1", "output2"])
Binarizer...
>>> binarizer2.transform(df2).show()
+-------+-------+-------+-------+
|values1|values2|output1|output2|
+-------+-------+-------+-------+
| 0.5| 0.3| 1.0| 0.0|
+-------+-------+-------+-------+
...
"""
_input_kwargs: Dict[str, Any]
threshold: Param[float] = Param(
Params._dummy(),
"threshold",
"Param for threshold used to binarize continuous features. "
+ "The features greater than the threshold will be binarized to 1.0. "
+ "The features equal to or less than the threshold will be binarized to 0.0",
typeConverter=TypeConverters.toFloat,
)
thresholds: Param[List[float]] = Param(
Params._dummy(),
"thresholds",
"Param for array of threshold used to binarize continuous features. "
+ "This is for multiple columns input. If transforming multiple columns "
+ "and thresholds is not set, but threshold is set, then threshold will "
+ "be applied across all columns.",
typeConverter=TypeConverters.toListFloat,
)
@overload
def __init__(
self,
*,
threshold: float = ...,
inputCol: Optional[str] = ...,
outputCol: Optional[str] = ...,
):
...
@overload
def __init__(
self,
*,
thresholds: Optional[List[float]] = ...,
inputCols: Optional[List[str]] = ...,
outputCols: Optional[List[str]] = ...,
):
...
@keyword_only
def __init__(
self,
*,
threshold: float = 0.0,
inputCol: Optional[str] = None,
outputCol: Optional[str] = None,
thresholds: Optional[List[float]] = None,
inputCols: Optional[List[str]] = None,
outputCols: Optional[List[str]] = None,
):
"""
__init__(self, \\*, threshold=0.0, inputCol=None, outputCol=None, thresholds=None, \
inputCols=None, outputCols=None)
"""
super(Binarizer, self).__init__()
self._java_obj = self._new_java_obj("org.apache.spark.ml.feature.Binarizer", self.uid)
self._setDefault(threshold=0.0)
kwargs = self._input_kwargs
self.setParams(**kwargs)
@overload
def setParams(
self,
*,
threshold: float = ...,
inputCol: Optional[str] = ...,
outputCol: Optional[str] = ...,
) -> "Binarizer":
...
@overload
def setParams(
self,
*,
thresholds: Optional[List[float]] = ...,
inputCols: Optional[List[str]] = ...,
outputCols: Optional[List[str]] = ...,
) -> "Binarizer":
...
@keyword_only
@since("1.4.0")
def setParams(
self,
*,
threshold: float = 0.0,
inputCol: Optional[str] = None,
outputCol: Optional[str] = None,
thresholds: Optional[List[float]] = None,
inputCols: Optional[List[str]] = None,
outputCols: Optional[List[str]] = None,
) -> "Binarizer":
"""
setParams(self, \\*, threshold=0.0, inputCol=None, outputCol=None, thresholds=None, \
inputCols=None, outputCols=None)
Sets params for this Binarizer.
"""
kwargs = self._input_kwargs
return self._set(**kwargs)
@since("1.4.0")
def setThreshold(self, value: float) -> "Binarizer":
"""
Sets the value of :py:attr:`threshold`.
"""
return self._set(threshold=value)
@since("3.0.0")
def setThresholds(self, value: List[float]) -> "Binarizer":
"""
Sets the value of :py:attr:`thresholds`.
"""
return self._set(thresholds=value)
def setInputCol(self, value: str) -> "Binarizer":
"""
Sets the value of :py:attr:`inputCol`.
"""
return self._set(inputCol=value)
@since("3.0.0")
def setInputCols(self, value: List[str]) -> "Binarizer":
"""
Sets the value of :py:attr:`inputCols`.
"""
return self._set(inputCols=value)
def setOutputCol(self, value: str) -> "Binarizer":
"""
Sets the value of :py:attr:`outputCol`.
"""
return self._set(outputCol=value)
@since("3.0.0")
def setOutputCols(self, value: List[str]) -> "Binarizer":
"""
Sets the value of :py:attr:`outputCols`.
"""
return self._set(outputCols=value)
class _LSHParams(HasInputCol, HasOutputCol):
"""
Mixin for Locality Sensitive Hashing (LSH) algorithm parameters.
"""
numHashTables: Param[int] = Param(
Params._dummy(),
"numHashTables",
"number of hash tables, where "
+ "increasing number of hash tables lowers the false negative rate, "
+ "and decreasing it improves the running performance.",
typeConverter=TypeConverters.toInt,
)
def __init__(self, *args: Any):
super(_LSHParams, self).__init__(*args)
self._setDefault(numHashTables=1)
def getNumHashTables(self) -> int:
"""
Gets the value of numHashTables or its default value.
"""
return self.getOrDefault(self.numHashTables)
class _LSH(JavaEstimator[JM], _LSHParams, JavaMLReadable, JavaMLWritable, Generic[JM]):
"""
Mixin for Locality Sensitive Hashing (LSH).
"""
def setNumHashTables(self: P, value: int) -> P:
"""
Sets the value of :py:attr:`numHashTables`.
"""
return self._set(numHashTables=value)
def setInputCol(self: P, value: str) -> P:
"""
Sets the value of :py:attr:`inputCol`.
"""
return self._set(inputCol=value)
def setOutputCol(self: P, value: str) -> P:
"""
Sets the value of :py:attr:`outputCol`.
"""
return self._set(outputCol=value)
class _LSHModel(JavaModel, _LSHParams):
"""
Mixin for Locality Sensitive Hashing (LSH) models.
"""
def setInputCol(self: P, value: str) -> P:
"""
Sets the value of :py:attr:`inputCol`.
"""
return self._set(inputCol=value)
def setOutputCol(self: P, value: str) -> P:
"""
Sets the value of :py:attr:`outputCol`.
"""
return self._set(outputCol=value)
@try_remote_attribute_relation
def approxNearestNeighbors(
self,
dataset: DataFrame,
key: Vector,
numNearestNeighbors: int,
distCol: str = "distCol",
) -> DataFrame:
"""
Given a large dataset and an item, approximately find at most k items which have the
closest distance to the item. If the :py:attr:`outputCol` is missing, the method will
transform the data; if the :py:attr:`outputCol` exists, it will use that. This allows
caching of the transformed data when necessary.
Notes
-----
This method is experimental and will likely change behavior in the next release.
Parameters
----------
dataset : :py:class:`pyspark.sql.DataFrame`
The dataset to search for nearest neighbors of the key.
key : :py:class:`pyspark.ml.linalg.Vector`
Feature vector representing the item to search for.
numNearestNeighbors : int
The maximum number of nearest neighbors.
distCol : str
Output column for storing the distance between each result row and the key.
Use "distCol" as default value if it's not specified.
Returns
-------
:py:class:`pyspark.sql.DataFrame`
A dataset containing at most k items closest to the key. A column "distCol" is
added to show the distance between each row and the key.
"""
return self._call_java("approxNearestNeighbors", dataset, key, numNearestNeighbors, distCol)
@try_remote_attribute_relation
def approxSimilarityJoin(
self,
datasetA: DataFrame,
datasetB: DataFrame,
threshold: float,
distCol: str = "distCol",
) -> DataFrame:
"""
Join two datasets to approximately find all pairs of rows whose distance are smaller than
the threshold. If the :py:attr:`outputCol` is missing, the method will transform the data;
if the :py:attr:`outputCol` exists, it will use that. This allows caching of the
transformed data when necessary.
Parameters
----------
datasetA : :py:class:`pyspark.sql.DataFrame`
One of the datasets to join.
datasetB : :py:class:`pyspark.sql.DataFrame`
Another dataset to join.
threshold : float
The threshold for the distance of row pairs.
distCol : str, optional
Output column for storing the distance between each pair of rows. Use
"distCol" as default value if it's not specified.
Returns
-------
:py:class:`pyspark.sql.DataFrame`
A joined dataset containing pairs of rows. The original rows are in columns
"datasetA" and "datasetB", and a column "distCol" is added to show the distance
between each pair.
"""
threshold = TypeConverters.toFloat(threshold)
return self._call_java("approxSimilarityJoin", datasetA, datasetB, threshold, distCol)
class _BucketedRandomProjectionLSHParams:
"""
Params for :py:class:`BucketedRandomProjectionLSH` and
:py:class:`BucketedRandomProjectionLSHModel`.
.. versionadded:: 3.0.0
"""
bucketLength: Param[float] = Param(
Params._dummy(),
"bucketLength",
"the length of each hash bucket, " + "a larger bucket lowers the false negative rate.",
typeConverter=TypeConverters.toFloat,
)
@since("2.2.0")
def getBucketLength(self) -> float:
"""
Gets the value of bucketLength or its default value.
"""
return (cast(Params, self)).getOrDefault(self.bucketLength)
@inherit_doc
class BucketedRandomProjectionLSH(
_LSH["BucketedRandomProjectionLSHModel"],
_LSHParams,
_BucketedRandomProjectionLSHParams,
HasSeed,
JavaMLReadable["BucketedRandomProjectionLSH"],
JavaMLWritable,
):
"""
LSH class for Euclidean distance metrics.
The input is dense or sparse vectors, each of which represents a point in the Euclidean
distance space. The output will be vectors of configurable dimension. Hash values in the same
dimension are calculated by the same hash function.
.. versionadded:: 2.2.0
Notes
-----
- `Stable Distributions in Wikipedia article on Locality-sensitive hashing \
<https://en.wikipedia.org/wiki/Locality-sensitive_hashing#Stable_distributions>`_
- `Hashing for Similarity Search: A Survey <https://arxiv.org/abs/1408.2927>`_
Examples
--------
>>> from pyspark.ml.linalg import Vectors
>>> from pyspark.sql.functions import col
>>> data = [(0, Vectors.dense([-1.0, -1.0 ]),),
... (1, Vectors.dense([-1.0, 1.0 ]),),
... (2, Vectors.dense([1.0, -1.0 ]),),
... (3, Vectors.dense([1.0, 1.0]),)]
>>> df = spark.createDataFrame(data, ["id", "features"])
>>> brp = BucketedRandomProjectionLSH()
>>> brp.setInputCol("features")
BucketedRandomProjectionLSH...
>>> brp.setOutputCol("hashes")
BucketedRandomProjectionLSH...
>>> brp.setSeed(12345)
BucketedRandomProjectionLSH...
>>> brp.setBucketLength(1.0)
BucketedRandomProjectionLSH...
>>> model = brp.fit(df)
>>> model.getBucketLength()
1.0
>>> model.setOutputCol("hashes")
BucketedRandomProjectionLSHModel...
>>> model.transform(df).head()
Row(id=0, features=DenseVector([-1.0, -1.0]), hashes=[DenseVector([-1.0])])
>>> data2 = [(4, Vectors.dense([2.0, 2.0 ]),),
... (5, Vectors.dense([2.0, 3.0 ]),),
... (6, Vectors.dense([3.0, 2.0 ]),),
... (7, Vectors.dense([3.0, 3.0]),)]
>>> df2 = spark.createDataFrame(data2, ["id", "features"])
>>> model.approxNearestNeighbors(df2, Vectors.dense([1.0, 2.0]), 1).collect()
[Row(id=4, features=DenseVector([2.0, 2.0]), hashes=[DenseVector([1.0])], distCol=1.0)]
>>> model.approxSimilarityJoin(df, df2, 3.0, distCol="EuclideanDistance").select(
... col("datasetA.id").alias("idA"),
... col("datasetB.id").alias("idB"),
... col("EuclideanDistance")).show()
+---+---+-----------------+
|idA|idB|EuclideanDistance|
+---+---+-----------------+
| 3| 6| 2.23606797749979|
+---+---+-----------------+
...
>>> model.approxSimilarityJoin(df, df2, 3, distCol="EuclideanDistance").select(
... col("datasetA.id").alias("idA"),
... col("datasetB.id").alias("idB"),
... col("EuclideanDistance")).show()
+---+---+-----------------+
|idA|idB|EuclideanDistance|
+---+---+-----------------+
| 3| 6| 2.23606797749979|
+---+---+-----------------+
...
>>> brpPath = temp_path + "/brp"
>>> brp.save(brpPath)
>>> brp2 = BucketedRandomProjectionLSH.load(brpPath)
>>> brp2.getBucketLength() == brp.getBucketLength()
True
>>> modelPath = temp_path + "/brp-model"
>>> model.save(modelPath)
>>> model2 = BucketedRandomProjectionLSHModel.load(modelPath)
>>> model.transform(df).head().hashes == model2.transform(df).head().hashes
True
"""
_input_kwargs: Dict[str, Any]
@keyword_only
def __init__(
self,
*,
inputCol: Optional[str] = None,
outputCol: Optional[str] = None,
seed: Optional[int] = None,
numHashTables: int = 1,
bucketLength: Optional[float] = None,
):
"""
__init__(self, \\*, inputCol=None, outputCol=None, seed=None, numHashTables=1, \
bucketLength=None)
"""
super(BucketedRandomProjectionLSH, self).__init__()
self._java_obj = self._new_java_obj(
"org.apache.spark.ml.feature.BucketedRandomProjectionLSH", self.uid
)
kwargs = self._input_kwargs
self.setParams(**kwargs)
@keyword_only
@since("2.2.0")
def setParams(
self,
*,
inputCol: Optional[str] = None,
outputCol: Optional[str] = None,
seed: Optional[int] = None,
numHashTables: int = 1,
bucketLength: Optional[float] = None,
) -> "BucketedRandomProjectionLSH":
"""
setParams(self, \\*, inputCol=None, outputCol=None, seed=None, numHashTables=1, \
bucketLength=None)
Sets params for this BucketedRandomProjectionLSH.
"""
kwargs = self._input_kwargs
return self._set(**kwargs)
@since("2.2.0")
def setBucketLength(self, value: float) -> "BucketedRandomProjectionLSH":
"""
Sets the value of :py:attr:`bucketLength`.
"""
return self._set(bucketLength=value)
def setSeed(self, value: int) -> "BucketedRandomProjectionLSH":
"""
Sets the value of :py:attr:`seed`.
"""
return self._set(seed=value)
def _create_model(self, java_model: "JavaObject") -> "BucketedRandomProjectionLSHModel":
return BucketedRandomProjectionLSHModel(java_model)
class BucketedRandomProjectionLSHModel(
_LSHModel,
_BucketedRandomProjectionLSHParams,
JavaMLReadable["BucketedRandomProjectionLSHModel"],
JavaMLWritable,
):
r"""
Model fitted by :py:class:`BucketedRandomProjectionLSH`, where multiple random vectors are
stored. The vectors are normalized to be unit vectors and each vector is used in a hash
function: :math:`h_i(x) = floor(r_i \cdot x / bucketLength)` where :math:`r_i` is the
i-th random unit vector. The number of buckets will be `(max L2 norm of input vectors) /
bucketLength`.
.. versionadded:: 2.2.0
"""
@inherit_doc
class Bucketizer(
JavaTransformer,
HasInputCol,
HasOutputCol,
HasInputCols,
HasOutputCols,
HasHandleInvalid,
JavaMLReadable["Bucketizer"],
JavaMLWritable,
):
"""
Maps a column of continuous features to a column of feature buckets. Since 3.0.0,
:py:class:`Bucketizer` can map multiple columns at once by setting the :py:attr:`inputCols`
parameter. Note that when both the :py:attr:`inputCol` and :py:attr:`inputCols` parameters
are set, an Exception will be thrown. The :py:attr:`splits` parameter is only used for single
column usage, and :py:attr:`splitsArray` is for multiple columns.
.. versionadded:: 1.4.0
Examples
--------
>>> values = [(0.1, 0.0), (0.4, 1.0), (1.2, 1.3), (1.5, float("nan")),
... (float("nan"), 1.0), (float("nan"), 0.0)]
>>> df = spark.createDataFrame(values, ["values1", "values2"])
>>> bucketizer = Bucketizer()
>>> bucketizer.setSplits([-float("inf"), 0.5, 1.4, float("inf")])
Bucketizer...
>>> bucketizer.setInputCol("values1")
Bucketizer...
>>> bucketizer.setOutputCol("buckets")
Bucketizer...
>>> bucketed = bucketizer.setHandleInvalid("keep").transform(df).collect()
>>> bucketed = bucketizer.setHandleInvalid("keep").transform(df.select("values1"))
>>> bucketed.show(truncate=False)
+-------+-------+
|values1|buckets|
+-------+-------+
|0.1 |0.0 |
|0.4 |0.0 |
|1.2 |1.0 |
|1.5 |2.0 |
|NaN |3.0 |
|NaN |3.0 |
+-------+-------+
...
>>> bucketizer.setParams(outputCol="b").transform(df).head().b
0.0
>>> bucketizerPath = temp_path + "/bucketizer"
>>> bucketizer.save(bucketizerPath)
>>> loadedBucketizer = Bucketizer.load(bucketizerPath)
>>> loadedBucketizer.getSplits() == bucketizer.getSplits()
True
>>> loadedBucketizer.transform(df).take(1) == bucketizer.transform(df).take(1)
True
>>> bucketed = bucketizer.setHandleInvalid("skip").transform(df).collect()
>>> len(bucketed)
4
>>> bucketizer2 = Bucketizer(splitsArray=
... [[-float("inf"), 0.5, 1.4, float("inf")], [-float("inf"), 0.5, float("inf")]],
... inputCols=["values1", "values2"], outputCols=["buckets1", "buckets2"])
>>> bucketed2 = bucketizer2.setHandleInvalid("keep").transform(df)
>>> bucketed2.show(truncate=False)
+-------+-------+--------+--------+
|values1|values2|buckets1|buckets2|
+-------+-------+--------+--------+
|0.1 |0.0 |0.0 |0.0 |
|0.4 |1.0 |0.0 |1.0 |
|1.2 |1.3 |1.0 |1.0 |
|1.5 |NaN |2.0 |2.0 |
|NaN |1.0 |3.0 |1.0 |
|NaN |0.0 |3.0 |0.0 |
+-------+-------+--------+--------+
...
"""
_input_kwargs: Dict[str, Any]
splits: Param[List[float]] = Param(
Params._dummy(),
"splits",
"Split points for mapping continuous features into buckets. With n+1 splits, "
+ "there are n buckets. A bucket defined by splits x,y holds values in the "
+ "range [x,y) except the last bucket, which also includes y. The splits "
+ "should be of length >= 3 and strictly increasing. Values at -inf, inf must be "
+ "explicitly provided to cover all Double values; otherwise, values outside the "
+ "splits specified will be treated as errors.",
typeConverter=TypeConverters.toListFloat,
)
handleInvalid: Param[str] = Param(
Params._dummy(),
"handleInvalid",
"how to handle invalid entries "
"containing NaN values. Values outside the splits will always be treated "
"as errors. Options are 'skip' (filter out rows with invalid values), "
+ "'error' (throw an error), or 'keep' (keep invalid values in a "
+ "special additional bucket). Note that in the multiple column "
+ "case, the invalid handling is applied to all columns. That said "
+ "for 'error' it will throw an error if any invalids are found in "
+ "any column, for 'skip' it will skip rows with any invalids in "
+ "any columns, etc.",
typeConverter=TypeConverters.toString,
)
splitsArray: Param[List[List[float]]] = Param(
Params._dummy(),
"splitsArray",
"The array of split points for mapping "
+ "continuous features into buckets for multiple columns. For each input "
+ "column, with n+1 splits, there are n buckets. A bucket defined by "
+ "splits x,y holds values in the range [x,y) except the last bucket, "
+ "which also includes y. The splits should be of length >= 3 and "
+ "strictly increasing. Values at -inf, inf must be explicitly provided "
+ "to cover all Double values; otherwise, values outside the splits "
+ "specified will be treated as errors.",
typeConverter=TypeConverters.toListListFloat,
)
@overload
def __init__(
self,
*,
splits: Optional[List[float]] = ...,
inputCol: Optional[str] = ...,
outputCol: Optional[str] = ...,
handleInvalid: str = ...,
):
...
@overload
def __init__(
self,
*,
handleInvalid: str = ...,
splitsArray: Optional[List[List[float]]] = ...,
inputCols: Optional[List[str]] = ...,
outputCols: Optional[List[str]] = ...,
):
...
@keyword_only
def __init__(
self,
*,
splits: Optional[List[float]] = None,
inputCol: Optional[str] = None,
outputCol: Optional[str] = None,
handleInvalid: str = "error",
splitsArray: Optional[List[List[float]]] = None,
inputCols: Optional[List[str]] = None,
outputCols: Optional[List[str]] = None,
):
"""
__init__(self, \\*, splits=None, inputCol=None, outputCol=None, handleInvalid="error", \
splitsArray=None, inputCols=None, outputCols=None)
"""
super(Bucketizer, self).__init__()
self._java_obj = self._new_java_obj("org.apache.spark.ml.feature.Bucketizer", self.uid)
self._setDefault(handleInvalid="error")
kwargs = self._input_kwargs
self.setParams(**kwargs)
@overload
def setParams(
self,
*,
splits: Optional[List[float]] = ...,
inputCol: Optional[str] = ...,
outputCol: Optional[str] = ...,
handleInvalid: str = ...,
) -> "Bucketizer":
...
@overload
def setParams(
self,
*,
handleInvalid: str = ...,
splitsArray: Optional[List[List[float]]] = ...,
inputCols: Optional[List[str]] = ...,
outputCols: Optional[List[str]] = ...,
) -> "Bucketizer":
...
@keyword_only
@since("1.4.0")
def setParams(
self,
*,
splits: Optional[List[float]] = None,
inputCol: Optional[str] = None,
outputCol: Optional[str] = None,
handleInvalid: str = "error",
splitsArray: Optional[List[List[float]]] = None,
inputCols: Optional[List[str]] = None,
outputCols: Optional[List[str]] = None,
) -> "Bucketizer":
"""
setParams(self, \\*, splits=None, inputCol=None, outputCol=None, handleInvalid="error", \
splitsArray=None, inputCols=None, outputCols=None)
Sets params for this Bucketizer.
"""
kwargs = self._input_kwargs
return self._set(**kwargs)
@since("1.4.0")
def setSplits(self, value: List[float]) -> "Bucketizer":
"""
Sets the value of :py:attr:`splits`.
"""
return self._set(splits=value)
@since("1.4.0")
def getSplits(self) -> List[float]:
"""
Gets the value of threshold or its default value.
"""
return self.getOrDefault(self.splits)
@since("3.0.0")
def setSplitsArray(self, value: List[List[float]]) -> "Bucketizer":
"""
Sets the value of :py:attr:`splitsArray`.
"""
return self._set(splitsArray=value)
@since("3.0.0")
def getSplitsArray(self) -> List[List[float]]:
"""
Gets the array of split points or its default value.
"""
return self.getOrDefault(self.splitsArray)
def setInputCol(self, value: str) -> "Bucketizer":
"""
Sets the value of :py:attr:`inputCol`.
"""
return self._set(inputCol=value)
@since("3.0.0")
def setInputCols(self, value: List[str]) -> "Bucketizer":
"""
Sets the value of :py:attr:`inputCols`.
"""
return self._set(inputCols=value)
def setOutputCol(self, value: str) -> "Bucketizer":
"""
Sets the value of :py:attr:`outputCol`.
"""
return self._set(outputCol=value)
@since("3.0.0")
def setOutputCols(self, value: List[str]) -> "Bucketizer":
"""
Sets the value of :py:attr:`outputCols`.
"""
return self._set(outputCols=value)
def setHandleInvalid(self, value: str) -> "Bucketizer":
"""
Sets the value of :py:attr:`handleInvalid`.
"""
return self._set(handleInvalid=value)
class _CountVectorizerParams(JavaParams, HasInputCol, HasOutputCol):
"""
Params for :py:class:`CountVectorizer` and :py:class:`CountVectorizerModel`.
"""
minTF: Param[float] = Param(
Params._dummy(),
"minTF",
"Filter to ignore rare words in"
+ " a document. For each document, terms with frequency/count less than the given"
+ " threshold are ignored. If this is an integer >= 1, then this specifies a count (of"
+ " times the term must appear in the document); if this is a double in [0,1), then this "
+ "specifies a fraction (out of the document's token count). Note that the parameter is "
+ "only used in transform of CountVectorizerModel and does not affect fitting. Default 1.0",
typeConverter=TypeConverters.toFloat,
)
minDF: Param[float] = Param(
Params._dummy(),
"minDF",
"Specifies the minimum number of"
+ " different documents a term must appear in to be included in the vocabulary."
+ " If this is an integer >= 1, this specifies the number of documents the term must"
+ " appear in; if this is a double in [0,1), then this specifies the fraction of documents."
+ " Default 1.0",
typeConverter=TypeConverters.toFloat,
)
maxDF: Param[float] = Param(
Params._dummy(),
"maxDF",
"Specifies the maximum number of"
+ " different documents a term could appear in to be included in the vocabulary."
+ " A term that appears more than the threshold will be ignored. If this is an"
+ " integer >= 1, this specifies the maximum number of documents the term could appear in;"
+ " if this is a double in [0,1), then this specifies the maximum"
+ " fraction of documents the term could appear in."
+ " Default (2^63) - 1",
typeConverter=TypeConverters.toFloat,
)
vocabSize: Param[int] = Param(
Params._dummy(),
"vocabSize",
"max size of the vocabulary. Default 1 << 18.",
typeConverter=TypeConverters.toInt,
)
binary: Param[bool] = Param(
Params._dummy(),
"binary",
"Binary toggle to control the output vector values."
+ " If True, all nonzero counts (after minTF filter applied) are set to 1. This is useful"
+ " for discrete probabilistic models that model binary events rather than integer counts."
+ " Default False",
typeConverter=TypeConverters.toBoolean,
)
def __init__(self, *args: Any):
super(_CountVectorizerParams, self).__init__(*args)
self._setDefault(minTF=1.0, minDF=1.0, maxDF=2**63 - 1, vocabSize=1 << 18, binary=False)
@since("1.6.0")
def getMinTF(self) -> float:
"""
Gets the value of minTF or its default value.
"""
return self.getOrDefault(self.minTF)
@since("1.6.0")
def getMinDF(self) -> float:
"""
Gets the value of minDF or its default value.
"""
return self.getOrDefault(self.minDF)
@since("2.4.0")
def getMaxDF(self) -> float:
"""
Gets the value of maxDF or its default value.
"""
return self.getOrDefault(self.maxDF)
@since("1.6.0")
def getVocabSize(self) -> int:
"""