@@ -18,7 +18,7 @@ Written for Python 2.7. Requires TensorFlow >=1.10 (deprecation warnings
18
18
exist for TF>1.10, but the code still works).
19
19
20
20
The model and subsequent experiments are more fully described in
21
- [ Weinman et al. (ICDAR 2019)] ( https://www .cs.grinnell.edu/~weinman /pubs/weinman19deep.pdf )
21
+ [ Weinman et al. (ICDAR 2019)] ( https://weinman .cs.grinnell.edu/pubs/weinman19deep.pdf )
22
22
23
23
# Structure
24
24
@@ -138,6 +138,15 @@ With the full training data, by one million iterations the model
138
138
typically converges to around 5% training character error and 27.5%
139
139
word error.
140
140
141
+ ## Checkpoints
142
+
143
+ [ Pre-trained model checkpoints] ( http://hdl.handle.net/11084/23328 ) at
144
+ DOI:[ 11084/23328] ( http://hdl.handle.net/11084/23328 ) are used to
145
+ produce results in the following paper:
146
+
147
+ > Weinman, J. et al. (2019) Deep Neural Networks for Text Detection
148
+ > and Recognition in Historical Maps. In Proc. ICDAR.
149
+
141
150
# Testing
142
151
143
152
The evaluate script (` src/evaluate.py ` ) streams statistics for one
@@ -220,14 +229,14 @@ running `test.py` or `validate.py` (in this repository).
220
229
221
230
# API Notes
222
231
223
- This version uses the TensorFlow
232
+ This version uses the TensorFlow (v1.14)
224
233
[ Dataset] ( https://www.tensorflow.org/guide/datasets ) for fast
225
234
I/O. Training, testing, validation, and prediction use a custom
226
235
[ Estimator] ( https://www.tensorflow.org/guide/estimators ) .
227
236
228
237
# Citing this work
229
238
230
- Please cite the following [ paper] ( https://www .cs.grinnell.edu/~weinman /pubs/weinman19deep.pdf ) if you use this code in your own research work:
239
+ Please cite the following [ paper] ( https://weinman .cs.grinnell.edu/pubs/weinman19deep.pdf ) if you use this code in your own research work:
231
240
232
241
``` text
233
242
@inproceedings{ weinman19deep,
@@ -236,7 +245,8 @@ Please cite the following [paper](https://www.cs.grinnell.edu/~weinman/pubs/wein
236
245
booktitle = {Proc. IAPR International Conference on Document Analysis and Recognition},
237
246
month = {Sep.},
238
247
year = {2019},
239
- location = {Sydney, Australia}
248
+ location = {Sydney, Australia},
249
+ doi = {10.1109/ICDAR.2019.00149}
240
250
}
241
251
```
242
252
0 commit comments