forked from irhete/graphScope
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgraphScope.py
263 lines (237 loc) · 12.3 KB
/
graphScope.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
from math import log
import numpy as np
from igraph import *
import time
from write_graph import *
class GraphSegment:
def __init__(self, g, nodesInPartS, nodesInPartD, part):
self.g = g
self.nodesInPartS = nodesInPartS
self.nodesInPartD = nodesInPartD
self.part = part
self.segments = 1
def graphScope(segment, newSegment):
encodingCostSegment = totalCostForSegment(segment, segment.segments)
encodingCostNewGraph = totalCostForSegment(newSegment, newSegment.segments)
unionGraph = Graph.Bipartite(segment.g.vs["type"], segment.g.get_edgelist(), directed=False)
unionGraph.add_edges(newSegment.g.get_edgelist())
resultUnion = partitionGraph(unionGraph, 1, segment.segments + 1)
unionSegment = GraphSegment(unionGraph, resultUnion[0], resultUnion[1], resultUnion[2])
encodingCostUnion = totalCostForSegment(unionSegment, segment.segments + 1)
print "encodingCostUnion", encodingCostUnion
print "encodingCostSegment", encodingCostSegment
print "encodingCostNewGraph", encodingCostNewGraph
if encodingCostUnion - encodingCostSegment < encodingCostNewGraph:
unionSegment.segments = segment.segments + 1
return [unionSegment]
else:
return [segment, newSegment]
print "time.graphScope after: %f " % time.time()
def entropy(arr):
entropy = 0
totalInstances = sum(arr)
for instance in arr:
if instance > 0:
entropy += (float(instance) / totalInstances) * log(float(instance) / totalInstances, 2)
return -entropy
def crossEntropy(arrP, arrQ):
entropy = 0
totalInstancesP = sum(arrP)
totalInstancesQ = sum(arrQ)
for i in xrange(len(arrP)):
if arrP[i] > 0:
if (arrQ[i] == 0):
print arrP
print arrQ
entropy += (float(arrP[i]) / totalInstancesP) * log(float(arrQ[i]) / totalInstancesQ, 2)
return -entropy
def totalCost(g, nodesInPartS, nodesInPartD, part, sourceNodes, numberOfSegments = 1):
# source and destination are arrays of frequencies for partitions
partitionToPartition = createPartitionToPartition(g, nodesInPartS, nodesInPartD, part, sourceNodes, numberOfSegments)
source = [len(elem) for elem in nodesInPartS]
destination = [len(elem) for elem in nodesInPartD]
m = sum(source)
n = sum(destination)
partitionEncodingCost = m * entropy(source) + n * entropy(destination)
graphEncodingCost = len(g.es)
k = len(source)
l = len(destination)
for i in xrange(k):
for j in xrange(l):
gamma = source[i] * destination[j] * numberOfSegments
arr = []
arr.append(partitionToPartition[i].tolist()[0][j])
arr.append(gamma - arr[0])
graphEncodingCost += gamma * entropy(arr)
return partitionEncodingCost + graphEncodingCost
def totalCostForSegment(segment, numberOfSegments):
sourceNodes = [i for i, x in enumerate(segment.g.vs["type"]) if x == False]
return totalCost(segment.g, segment.nodesInPartS, segment.nodesInPartD, segment.part, sourceNodes, numberOfSegments)
def averageEntropy(g, nodesInPartS, nodesInPartD, part, partIndex, sourceNodes, numberOfSegments):
partEntropy = 0
destNodesCount = len(g.vs) - len(sourceNodes)
for node in nodesInPartS[partIndex]:
arr = [0] * len(nodesInPartD)
for neighbor in g.neighbors(node):
arr[part[neighbor]] += 1
arr.append(destNodesCount * numberOfSegments - sum(arr))
partEntropy += entropy(arr)
return partEntropy / len(nodesInPartS)
def findPartitionToSplit(g, nodesInPartS, nodesInPartD, part, sourceNodes, numberOfSegments):
maxEntropy = 0
maxPartition = 0
for partIndex in xrange(len(nodesInPartS)):
avgEntropy = averageEntropy(g, nodesInPartS, nodesInPartD, part, partIndex, sourceNodes, numberOfSegments)
# print "average entropy for partition", partIndex, "=", avgEntropy
if avgEntropy > maxEntropy:
maxEntropy = avgEntropy;
maxPartition = partIndex
return maxPartition
def reGroup(g, nodesInPartS, nodesInPartD, part, sourceNodes, numberOfSegments):
sourceNodesCount = len(sourceNodes)
destNodesCount = len(g.vs) - len(sourceNodes)
partitionToPartition = np.zeros(shape=(len(nodesInPartS), len(nodesInPartD)))
nodeToPartition = np.zeros(shape=(sourceNodesCount, len(nodesInPartD)))
for node in xrange(sourceNodesCount):
for neighbor in g.neighbors(sourceNodes[node]):
nodeToPartition[node][part[neighbor]] += 1
partitionToPartition[part[sourceNodes[node]]][part[neighbor]] += 1
complementaryColumnForNodes = destNodesCount * numberOfSegments - np.apply_along_axis( sum, axis=1, arr=nodeToPartition)
nodeToPartition = np.append(nodeToPartition, np.transpose(np.matrix(complementaryColumnForNodes)), axis = 1)
possibleEdgesFromPartitions = np.array([len(elem) for elem in nodesInPartS]) * destNodesCount * numberOfSegments
existingEdgesFromPartitions = np.apply_along_axis( sum, axis=1, arr=partitionToPartition)
complementaryColumnForPartitions = possibleEdgesFromPartitions - existingEdgesFromPartitions
partitionToPartition = np.append(partitionToPartition, np.transpose(np.matrix(complementaryColumnForPartitions)), axis = 1)
for sourceIndex in xrange(sourceNodesCount):
bestPartitionCost = 1000000
for partition in xrange(len(nodesInPartS)):
if (partition == part[sourceNodes[sourceIndex]]):
currentCrossEntropy = crossEntropy(nodeToPartition[sourceIndex].tolist()[0], partitionToPartition[partition].tolist()[0])
else:
currentCrossEntropy = crossEntropy(nodeToPartition[sourceIndex].tolist()[0], (partitionToPartition[partition] + nodeToPartition[sourceIndex]).tolist()[0])
# print "node:", sourceNodes[sourceIndex], ", partition:", partition, ", cost:", currentCrossEntropy
if currentCrossEntropy < bestPartitionCost:
bestPartition = partition
bestPartitionCost = currentCrossEntropy
previousPartition = part[sourceNodes[sourceIndex]]
nodesInPartS[previousPartition].remove(sourceNodes[sourceIndex])
nodesInPartS[bestPartition].append(sourceNodes[sourceIndex])
partitionToPartition[previousPartition] = partitionToPartition[previousPartition] - nodeToPartition[sourceIndex];
partitionToPartition[bestPartition] = partitionToPartition[bestPartition] + nodeToPartition[sourceIndex];
part[sourceNodes[sourceIndex]] = bestPartition
if len(nodesInPartS[previousPartition]) == 0:
del nodesInPartS[previousPartition]
partitionToPartition = np.delete(partitionToPartition, (previousPartition), axis=0)
for sourceNode in sourceNodes:
if part[sourceNode] > previousPartition:
part[sourceNode] -= 1;
def searchKL(g, nodesInPartS, nodesInPartD, part, sourceNodes, numberOfSegments, verbose = False):
partIndex = findPartitionToSplit(g, nodesInPartS, nodesInPartD, part, sourceNodes, numberOfSegments)
if len(nodesInPartS[partIndex]) > 1:
currentAverageEntropy = averageEntropy(g, nodesInPartS, nodesInPartD, part, partIndex, sourceNodes, numberOfSegments)
# print "current average entropy", currentAverageEntropy
for s in nodesInPartS[partIndex]:
newNodesInPartS = nodesInPartS[:]
newNodesInPartS[partIndex].remove(s)
newNodesInPartS.append([s])
newPart = part[:]
newPart[s] = len(nodesInPartS)
newAverageEntropy = averageEntropy(g, newNodesInPartS, nodesInPartD, newPart, partIndex, sourceNodes, numberOfSegments)
# print "new average entropy", newAverageEntropy
if newAverageEntropy < currentAverageEntropy:
nodesInPartS = newNodesInPartS
currentAverageEntropy = newAverageEntropy
part = newPart
if (verbose):
print "after split:", nodesInPartS
reGroup(g, nodesInPartS, nodesInPartD, part, sourceNodes, numberOfSegments)
if (verbose):
print "after update:", nodesInPartS
currentTotalCost = totalCost(g, nodesInPartS, nodesInPartD, part, sourceNodes)
# print "current total cost:", currentTotalCost
k = len(nodesInPartS)
i = 0
while i < k-1:
j = i+1
while j < k:
newNodesInPartS = []
for partition in xrange(len(nodesInPartS)):
newNodesInPartS.append(nodesInPartS[partition][:])
newNodesInPartS[i].extend(newNodesInPartS[j])
del newNodesInPartS[j]
newPart = part[:]
for sourceNode in sourceNodes:
if newPart[sourceNode] == j:
newPart[sourceNode] = i
elif newPart[sourceNode] > j:
newPart[sourceNode] -= 1
newTotalCost = totalCost(g, newNodesInPartS, nodesInPartD, newPart, sourceNodes)
# print "new total cost:", newTotalCost, "source:", nodesInPartS
if newTotalCost <= currentTotalCost:
nodesInPartS = newNodesInPartS
part = newPart
currentTotalCost = newTotalCost
k -= 1
else:
j += 1
i += 1
if (verbose):
print "after merge:", nodesInPartS
return [nodesInPartS, part]
def createPartitionToPartition(g, nodesInPartS, nodesInPartD, part, sourceNodes, numberOfSegments):
partitionToPartition = np.zeros(shape=(len(nodesInPartS), len(nodesInPartD)))
for nodeIndex in xrange(len(sourceNodes)):
for neighbor in g.neighbors(sourceNodes[nodeIndex]):
partitionToPartition[part[sourceNodes[nodeIndex]]][part[neighbor]] += 1
destNodesCount = len(g.vs) - len(sourceNodes)
possibleEdgesFromPartitions = np.array([len(elem) for elem in nodesInPartS]) * destNodesCount * numberOfSegments
existingEdgesFromPartitions = np.apply_along_axis( sum, axis=1, arr=partitionToPartition)
complementaryColumnForPartitions = possibleEdgesFromPartitions - existingEdgesFromPartitions
partitionToPartition = np.append(partitionToPartition, np.transpose(np.matrix(complementaryColumnForPartitions)), axis = 1)
return partitionToPartition
def initializeDestPartition(destNodes, part):
destNodePartition = 0
nodesInPartD = []
for destNode in destNodes:
nodesInPartD.append([destNode])
part[destNode] = destNodePartition
destNodePartition += 1
return [part, nodesInPartD]
def partitionGraph(g, iterations, numberOfSegments = 1):
totalNodes = len(g.vs)
part = [0] * totalNodes
nodesInPartS = []
nodesInPartD = []
sourceNodes = [i for i, x in enumerate(g.vs["type"]) if x == False]
destNodes = [i for i, x in enumerate(g.vs["type"]) if x == True]
nodesInPartS.append(sourceNodes[:])
nodesInPartD.append(destNodes[:])
#initialize destPartition so that each node is in its own partition
# initialized = initializeDestPartition(destNodes, part)
# part = initialized[0]
# nodesInPartD = initialized[1]
for i in xrange(iterations):
print "iteration", i, ":"
# searchKL for source nodes
result = searchKL(g, nodesInPartS, nodesInPartD, part, sourceNodes, numberOfSegments)
nodesInPartS = result[0]
part = result[1]
if (i == 0):
nodesInPartD = [destNodes[:]]
for destNode in destNodes:
part[destNode] = 0
# searchKL for dest nodes
result = searchKL(g, nodesInPartD, nodesInPartS, part, destNodes, numberOfSegments)
nodesInPartD = result[0]
part = result[1]
print "source:", nodesInPartS, "\n dest:", nodesInPartD, "\n partitioning", part, "\n"
<<<<<<< Updated upstream
adj = g.get_adjacency()
writeMatrixToPnms(adj, 'output/initial_matrix_wo.pnm', 'output/partitioned_noise_wo_iter_' + str(i) + '.pnm', sourceNodes, destNodes, nodesInPartS, nodesInPartD);
writeInitialGraphToFile(adj, sourceNodes, destNodes, 'output/initial_matrix_noise_wo.txt')
writePartitionedGraphToFile(nodesInPartS, nodesInPartD, part, adj, sourceNodes, destNodes, 'output/partitioned_noise_wo_iter_' + str(i) + '.txt')
=======
>>>>>>> Stashed changes
return [nodesInPartS, nodesInPartD, part]
# def segmentGraphToPartitions(segment, newGraph):
#