forked from srio/exex
-
Notifications
You must be signed in to change notification settings - Fork 0
/
exex.py
executable file
·997 lines (818 loc) · 30.2 KB
/
exex.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
import numpy
"""
exex : EXafs EXtraction
python routines to extract the EXAFS signal ( chi(k) ) from the absorption
spectrum ( mu(E) )
dependencies: numpy (matplotlib may be used for plotting, but not required)
MODIFICATION HISTORY:
20141204 [email protected], written
"""
__author__ = "Manuel Sanchez del Rio"
__contact__ = "[email protected]"
__copyright__ = "ESRF, 2014"
#
#
#
##
## definition: "set" is a numpy array (npoints,ncols) containing spetral data
##
def plotSet(set0,over=None,pltOk=True,xtitle="x",ytitle="y",toptitle="",label="",xmin=None,xmax=None,ymin=None,ymax=None):
r"""
plotSet(set0,over=None,pltOk=True,xtitle="x",ytitle="y",toptitle="",label="")
"""
if pltOk:
import matplotlib.pylab as plt
plt.figure(0)
plt.title(toptitle)
plt.xlabel(xtitle)
plt.ylabel(ytitle)
if label != "":
ax = plt.subplot(111)
ax.legend(bbox_to_anchor=(1.1, 1.05))
plt1 = plt.plot(set0[:,0],set0[:,1],'green')
if over != None:
plt1 = plt.plot(over[:,0],over[:,1],'blue')
else:
plt1 = plt.plot(set0[:,0],set0[:,1],'green',label='Raw data')
if over != None:
plt1 = plt.plot(over[:,0],over[:,1],'blue')
print("Kill plot to continue.")
x1,x2,y1,y2 = plt.axis()
if xmin != None:
x1 = xmin
if xmax != None:
x2 = xmax
if ymin != None:
y1 = ymin
if ymax != None:
y2 = ymax
plt.axis((x1,x2,y1,y2))
plt.show()
else:
for i in range(set0.shape[0]):
print(" %f %f "%(set0[i,0],set0[i,1]))
def getE0(set0):
r"""
(e0,ie0) = getE0(set0): returns the value and position of the maximum of derivative
"""
tmp = numpy.gradient(set0[:,1])
itmp = tmp.argmax()
return set0[itmp,0],itmp
def getJump(set0):
r"""
getJump(set0): returns Jump. set0 must be in k-space. Jump is the ratio of the
ordinates of points with k in [1,2] over the average of ordinates
of points with k<1
"""
#average values k < -1 A^(-1)
goodi = (set0[:,0] < -1.0)
y0 = (set0[goodi,1]).mean()
#average values 1 < k < 2 A^(-1)
goodi = (set0[:,0] > 1.0) & (set0[:,0] < 2.0)
y1 = (set0[goodi,1]).mean()
return numpy.abs(y1-y0)
def e2k(set0,e0=0.0):
r"""
e2k(set0,e0=0.0): converts from E (eV) to k (A^-1)
note: we use the convention that points with E<e0 will have negative k
"""
codata_ec = numpy.array(1.602176565e-19)
codata_me = numpy.array(9.10938291e-31)
codata_h = numpy.array(6.62606957e-34)
codata_hbar = codata_h/2.0/numpy.pi
#; converts a set in energy to a set in k
#; the negative energies (below edge) are treated as negative k
tmpx = set0[:,0] - e0
ccte = numpy.sqrt(codata_ec*2*codata_me/codata_hbar/codata_hbar)*1e-10
tmpxx = ((tmpx > 0) * 2-1) * numpy.sqrt(numpy.abs(tmpx)) * ccte
set0[:,0] = tmpxx
return set0
def k2e(set0,e0=0.0):
r"""
k2e(set0,e0=0.0): converts from k (A^-1) to E (eV)
"""
codata_ec = numpy.array(1.602176565e-19)
codata_me = numpy.array(9.10938291e-31)
codata_h = numpy.array(6.62606957e-34)
codata_hbar = codata_h/2.0/numpy.pi
#; converts a set in k to energy
#; the negative energies (below edge) are treated as negative k
ccte = numpy.power(codata_hbar,2) / 2 / codata_me / codata_ec * 1e20
tmpx = set0[:,0]
tmpx = ((tmpx > 0) * 2-1) * tmpx * tmpx * ccte
set1 = set0
set1[:,0] = tmpx
return set1
def polspl_evaluate(set2,xl,xh,c,nc,nr):
r"""
polspl_evaluate(set2,xl,xh,c,nc,nr): for internal use of postedge
PURPOSE:
evaluate the combined spline fitted from its coefficients.
INPUTS:
set2: the set with the original data
xl,xh arrays contain nr adjacent ranges over which to fit individual polynomials.
c array containing the polynomial coefficients resulting from the fit
nc array that specifies how many poly coeffs to use in each range
nr the number of adjacent ranges
OUTPUTS:
a variable to receive a set with the same abscissas of the input one and
the coordinates evaluated from the fit parameters
MODIFICATION HISTORY:
Written by: Manuel Sanchez del Rio. ESRF, February, 1993
2009-05-13 [email protected] updated doc
2014-12-04 [email protected] Translated to python
"""
fit = set2*0.0
#;change xl(1) and xh(nr) to extrapolate the fit
xl[1] = numpy.min(set2[0,:])
xh[nr] = numpy.max(set2[0,:])
#;
#; calculatest the first point
#;
xval=set2[0,0]
yval=0.0
for k in range(1,int(nc[1]+1)):
print(k)
yval = yval+ c[k] * numpy.power(xval,(k-1))
fit[0,0] = xval
fit[1,0] = yval
#;
#; now the rest of the points
#;
for i in range(len(set2[0,:])): # loop over all the points
for j in range(1,int(nr+1)): # loop over the # of intervals
if ((set2[0,i] > xl[j]) and (set2[0,i] <= xh[j])):
cstart=numpy.sum(nc[0:j])
xval = set2[0,i]
yval = 0.0
for k in range(1,int(nc[j]+1)):
yval = yval+ c[cstart+k] * numpy.power(xval,(k-1))
fit[0,i] = xval
fit[1,i] = yval
return fit
def polspl(x,y,w,npts,xl,xh,nr,nc):
r"""
polspl(x,y,w,npts,xl,xh,nr,nc): for internal use of postedge
PURPOSE:
polynomial spline least squares fit to data points Y(I).
only the function and it's first derivative are matched at the knots,
in order to give more degrees of freedom in the fit.
INPUTS:
x(i),i=1,npts abscissas
y(i),i=1,npts ordinates
w(i),i=1,npts weighting factor in least squares fit
fit minimizes the sum of w(i)*(y(i)-poly(x(i)))**2
if uniform weighting is desired, w(i) must be 1.
npts: points in x,y arrays. xl,xh arrays contain NR adjacent ranges
over which to fit individual polynomials. Array nc specifies
how many poly coeffs to use in each range.
OUTPUTS:
array with all coeffs, the first nc(1) of which belong to the first range,
the second nc(2) of which belong to the second range, and so forth.
SIDE EFFECTS:
Quite inefficient, because it uses a lot of loops inherited from
the Fortran code. However, for small set of data it is useful.
PROCEDURE:
(Translated from a Fortran Code)
The method here is to fit ordinary polynomials in X, not B-splines,
in order to save space on a mini-computer. This means that the
is rather poorly conditioned, and hence the limits on the
degree of the polynomial. The method of solution is Lagrange's
undetermined multipliers for the knot constraints and gaussian
elimination to solve the linear system.
MODIFICATION HISTORY:
Written by: Manuel Sanchez del Rio. ESRF February, 1993
2014-12-04 [email protected] Translated to python
this subroutine is a translation of the fortran subroutine
poslpl.for (found in the Frascati's package of EXAFS data analysis)
which header states:
SUBROUTINE POLSPL(X,Y,W,NPTS,XL,XH,NR,C,NC)
C
C POLYNOMIAL SPLINE LEAST SQUARES FIT TO DATA POINTS Y(I).
C ONLY THE FUNCTION AND IT'S FIRST DERIVATIVE ARE MATCHED AT THE KNOTS,
C IN ORDER TO GIVE MORE DEGREES OF FREEDOM IN THE FIT.
C
C X(I),I=1,NPTS ABSCISSAS
C Y(I),I=1,NPTS ORDINATES
C W(I),I=1,NPTS WEIGHTING FACTOR IN LEAST SQUARES FIT
C FIT MINIMIZES THE SUM OF W(I)*(Y(I)-POLY(X(I)))**2
C IF UNIFORM WEIGHTING IS DESIRED, W(I) MUST BE 1.
C
C NPTS POINTS IN X,Y ARRAYS. XL,XH ARRAYS CONTAIN NR ADJACENT RANGES
C OVER WHICH TO FIT INDIVIDUAL POLYNOMIALS. ARRAY NC SPECIFIES
C HOW MANY POLY COEFFS TO USE IN EACH RANGE. ARRAY C RETURNS
C ALL COEFFS, THE FIRST NC(1) OF WHICH BELONG TO THE FIRST RANGE,
C THE SECOND NC(2) OF WHICH BELONG TO THE SECOND RANGE, AND SO FORTH.
C
C THE METHOD HERE IS TO FIT ORDINARY POLYNOMIALS IN X, NOT B-SPLINES,
C IN ORDER TO SAVE SPACE ON A MINI-COMPUTER. THIS MEANS THAT THE
C FIT IS RATHER POORLY CONDITIONED, AND HENCE THE LIMITS ON THE
C DEGREE OF THE POLYNOMIAL. THE METHOD OF SOLUTION IS LAGRANGE'S
C UNDETERMINED MULTIPLIERS FOR THE KNOT CONSTRAINTS AND GAUSSIAN
C ELIMINATION TO SOLVE THE LINEAR SYSTEM.
C
"""
# ;
# ; few definitions
# ;
df = numpy.zeros(26)
a = numpy.zeros((36,37))
nbs = numpy.zeros(11,dtype=int)
xk = numpy.zeros(10)
c = numpy.zeros(36)
j=0
i=0
ne_idl=0
n = 0
k = 0
ibl = 0
ns = 0
ns1 = 0
nbs[1]=1
for i in range(1,nr+1):
n=n+int(nc[i])
nbs[i+1]=n+1
if xl[i] < xh[i]:
pass
else:
t=xl[i]
xl[i]=xh[i]
xh[i]=t
n=n+2*(nr-1)
n1=n+1
xl[nr+1]=0.
xh[nr+1]=0.
for ibl in range(1,nr+1):
xk[ibl]=.5*(xh[ibl]+xl[ibl+1])
if (xl[ibl] > xl[ibl+1]):
xk[ibl]=.5*(xl[ibl]+xh[ibl+1])
ns=nbs[ibl]
ne_idl=nbs[ibl+1]-1
for i in range(1,npts+1):
if((x[i] < xl[ibl]) or (x[i] > xh[ibl])):
pass
else:
df[ns]=1.0
ns1=ns+1
for j in range(ns1,ne_idl+1):
df[j]=df[j-1]*x[i]
for j in range(ns,ne_idl+1):
for k in range(j,ne_idl+1):
a[j,k]=a[j,k]+df[j]*df[k]*w[i]
a[j,n1]=a[j,n1]+df[j]*y[i]*w[i]
ncol=nbs[nr+1]-1
nk=nr-1
if (nk == 0):
pass
else:
for ik in range(1,nk+1):
ncol=ncol+1
ns=nbs[ik]
ne_idl=nbs[ik+1]-1
a[ns,ncol]=-1.
ns=ns+1
for i in range(ns,ne_idl+1):
a[i,ncol]=a[i-1,ncol]*xk[ik]
ncol=ncol+1
a[ns,ncol]=-1.
ns=ns+1
if (ns > ne_idl):
pass
else:
for i in range(ns,ne_idl+1):
a[i,ncol]=(ns-i-2)*numpy.power(xk[ik],(i-ns+1))
ncol=ncol-1
ns=nbs[ik+1]
ne_idl=nbs[ik+2]-1
a[ns,ncol]=1.0
ns=ns+1
for i in range(ns,ne_idl+1):
a[i,ncol]=a[i-1,ncol]*xk[ik]
ncol=ncol+1
a[ns,ncol]=1.0
ns=ns+1
if (ns > ne_idl):
pass
else:
for i in range(ns,ne_idl+1):
a[i,ncol]=(i-ns+2)*numpy.power(xk[ik],(i-ns+1))
for i in range(1,n+1):
i1=i-1
for j in range(1,i1+1):
a[i,j]=a[j,i]
nm1=n-1
for i in range(1,nm1+1):
i1=i+1
m=i
t=numpy.abs(a[i,i])
for j in range(i1,n+1):
if (t >= numpy.abs(a[j,i])):
pass
else:
m=j
t=numpy.abs(a[j,i])
if (m == i):
pass
else:
for j in range(1,n1+1):
t=a[i,j]
a[i,j]=a[m,j]
a[m,j]=t
for j in range(i1,n+1):
t=a[j,i]/a[i,i]
for k in range(i1,n1+1):
a[j,k]=a[j,k]-t*a[i,k]
c[n]=a[n,n1]/a[n,n]
for i in range(1,nm1+1):
ni=n-i
t=a[ni,n1]
ni1=ni+1
for j in range(ni1,n+1):
t=t-c[j]*a[ni,j]
c[ni]=t/a[ni,ni]
return c
def polspl_test():
r"""
polspl_test(): to test polspl ()
"""
set22 = numpy.loadtxt('set22.dat')
set22 = set22.T
npts = len(set22[1,:])
w = numpy.ones(npts+1)
xx = numpy.zeros(npts+1)
yy = numpy.zeros(npts+1)
#w=w*0.0+1.0
xx[1:npts+1]=set22[0,:]
yy[1:npts+1]=set22[1,:]
xl = numpy.array( [ 0.0000000, 0.0000000, \
7.6354497, 15.270899, 0.0000000,\
0.0000000, 0.0000000, 0.0000000, 0.0000000, 0.0000000 ])
xh = numpy.array( [ 0.0000000, 7.6354497,\
15.270899, 22.906349, 0.0000000, 0.0000000,\
0.0000000, 0.0000000, 0.0000000, 0.0000000 ] )
nc = numpy.array( [ 0.0000000, 4.0000000,\
4.0000000, 4.0000000, 0.0000000, 0.0000000,\
0.0000000, 0.0000000, 0.0000000, 0.0000000 ] )
nr = 3
c = polspl(xx,yy,w,npts,xl,xh,nr,nc)
print("set22.shape",set22.shape)
fit = polspl_evaluate(set22,xl,xh,c,nc,nr)
print("fit.shape",fit.shape)
print("c: ",c)
print("fit: ",fit)
return
def postEdge(set2,kmin=None,kmax=None,polDegree=[3,3,3],knots=None):
r"""
postEdge(set2,kmin=None,kmax=None,polDegree=[3,3,3],knots=None)
PURPOSE:
This procedure calculates the post edge fit of a xafs spectrum
INPUTS:
set2: input set of data
KEYWORD PARAMETERS:
kmin the bottom limit for the fit (defaults kmin=0)
kmax the upper limit for the fit (defaults max)
OUTPUTS:
a set with the fit
MODIFICATION HISTORY:
Written by: Manuel Sanchez del Rio. ESRF
February, 1993
1996-08-13 MSR ([email protected]) changes wmenu->wmenu2 and
xtext->widget_message
1998-10-01 [email protected] adapts for delia.
2000-02-12 MSR ([email protected]) adds Dialog_Parent keyword
2014-12-04 [email protected] Translated to python
"""
#Note that in/out arrays are numpy way: numpy.array((npoints,2))
xl = numpy.zeros(10)
xh = numpy.zeros(10)
c = numpy.zeros(36)
nc = numpy.zeros(10)
if len(polDegree) > 10:
print("Error: Maximum number of intervals is 10")
print(" Number of intervals forced to 10")
polDegree = polDegree[0:9]
x1 = 0.0 # set2[:,0].min()
x2 = set2[:,0].max()
if kmin != None:
x1 = kmin
if kmax != None:
x2 = kmax
xrange1 = [x1,x2]
print("++++++++++++++++++",xrange1)
if (knots != None):
if ( (len(polDegree)+1) != len(knots) ):
print("Error: dimension of knots must be dimension of polDegree+1")
print(" Forced automatic (equidistant) knot definition.")
knots = None
else:
xrange1 = knots[0],knots[-1]
nr = len(polDegree)
xl[1] = xrange1[0]
xh[nr] = xrange1[1]
for i in range(1,nr+1):
nc[i] = polDegree[i-1] + 1
if knots == None:
step = (xh[nr]-xl[1])/float(nr)
for i in range(1,nr):
xl[i+1] = xl[i] + step
xh[i] = xl[i+1]
else:
for i in range(1,nr):
xl[i+1] = knots[i]
xh[i] = xl[i+1]
#
# select only points in selected interval
#
goodi = (set2[:,0] >= xrange1[0]) & (set2[:,0] <= xrange1[1])
set22 = set2[goodi,:]
print(' Number of fitting points: %d'%(len(set22[:,0])))
print(' polynomials used for fitting: %d'%(nr))
print('# degree min max')
for i in range(1,nr+1):
print("%d %9d %9.2f %9.2f "%(i,nc[i]-1,xl[i],xh[i]))
# ;
# ; call spline
# ;
npts = len(set22[:,0])
w = numpy.ones(npts+1)
xx = numpy.zeros(npts+1)
yy = numpy.zeros(npts+1)
xx[1:] = set22[:,0]
yy[1:] = set22[:,1]
c = polspl(xx,yy,w,npts,xl,xh,nr,nc)
print("c:",c)
#TODO: polspl_evaluate receives and returns arrays like IDL (2,npoints)
fit0 = polspl_evaluate(set2.T,xl,xh,c,nc,nr)
return fit0.T
def window_ftr(setin,window=1,windpar=0.2,wrange=None):
r"""
window_ftr(setin,window=1,windpar=0.2,wrange=None)
PURPOSE:
This procedure calculates and applies a weighting window to a set
INPUTS:
setin: either:
numpy.array(npoints,ncols) set of data (CASE A)
numpy.array(npoints) array of abscissas (CASE B)
OUTPUT:
depends on the case:
CASE A: numpy.array(npoints,ncol) set with the weigted set (in index [:,1])
CASE B: numpy.array(npoints) the values of the weights
KEYWORD PARAMETERS:
window = kind of window:
1 Gaussian Window (default)
2 Hanning Window
3 Box
4 Parzen (triangular)
5 Welch
6 Hamming
7 Tukey
8 Papul
windpar Parameter for windowing
If WINDOW=(2,3,4,5,6) this sets the width of the appodization (default=0.2)
wrange = [xmin,xmax] the limits of the window. If wrange
is not set, the take the minimum and maximum values
of the abscisas. The window has value zero outside
this interval.
MODIFICATION HISTORY:
Written by: Manuel Sanchez del Rio. ESRF
March, 1993
96-08-14 MSR ([email protected]) adds names keyword.
06-03-14 [email protected] always exits "names"
2014-12-03 [email protected] translated to python
;-
"""
names = ['1 Gaussian', '2 Hanning','3 Box','4 Parzen','5 Welch','6 Hamming','7 Tukey','8 Papul','9 Kaiser']
print("Using window ",names[window-1])
si = setin.shape
if len(si) >=2: # input set
tk = setin[:,0]
else: # input array
tk = setin
if wrange == None:
xmax = tk.max()
xmin = tk.min()
else:
xmin = wrange[0]
xmax = wrange[1]
xp = (xmax + xmin) / 2.
xm = xmax - xmin
apo1 = xmin + windpar
apo2 = xmax - windpar
npoint = len(tk)
wind = numpy.ones(npoint)
if window == 1: # Gaussian
wind = numpy.power(( (tk - xp) /xm),2)
wind = numpy.exp(-wind * 9.2)
if window == 2: # Hanning
for i in range(npoint):
if tk[i] <= apo1:
wind[i] = 0.5*(1.0-numpy.cos(numpy.pi*(tk[i]-xmin)/windpar))
if tk[i] >= apo2:
wind[i] = 0.5*(1.0+numpy.cos(numpy.pi*(tk[i]-apo2)/windpar))
if window == 3: # Box
for i in range(npoint):
if tk[i] <= apo1:
wind[i] = 0.0
if tk[i] >= apo2:
wind[i] = 0.0
if window == 4: # Parzen (triangle)
for i in range(npoint):
if tk[i] <= apo1:
wind[i] = (tk[i]-xmin)/windpar
if tk[i] >= apo2:
wind[i] = 1 - (tk[i]-apo2)/windpar
if window == 5: # Welch
for i in range(npoint):
if tk[i] <= apo1:
wind[i] = 1.0 - numpy.power( ( (tk[i]-apo1) / windpar), 2)
if tk[i] >= apo2:
wind[i] = 1.0 - numpy.power( (tk[i]-apo2) / windpar, 2 )
if window == 6: # Hamming
for i in range(npoint):
if tk[i] <= apo1:
wind[i] = 1.08 - (.54+0.46*numpy.cos(numpy.pi*(tk[i]-xmin)/windpar))
if tk[i] >= apo2:
wind[i] = 1.08 - (.54-0.46*numpy.cos(numpy.pi*(tk[i]-apo2)/windpar))
if window == 7: # Tukey
for i in range(npoint):
if tk[i] <= apo1:
wind[i] = 1.0 - numpy.power(numpy.cos(0.5*numpy.pi*(tk[i]-xmin)/windpar),2)
if tk[i] >= apo2:
wind[i] = numpy.power(numpy.cos(-0.5*numpy.pi*(tk[i]-apo2)/windpar),2)
if window == 8: # Papul
for i in range(npoint):
if tk[i] <= apo1:
a=(1./numpy.pi)*numpy.sin(numpy.pi*(tk[i]-xmin)/windpar) + \
(1.-(tk[i]-xmin)/windpar)*numpy.cos(numpy.pi*(tk[i]-xmin)/windpar)
wind[i] = 1.0 - a
if tk[i] >= apo2:
a=(1./numpy.pi)*numpy.sin(numpy.pi*(tk[i]-apo2)/windpar) + \
(1.-(tk[i]-apo2)/windpar)*numpy.cos(numpy.pi*(tk[i]-apo2)/windpar)
wind[i] = a
# not implemented as require special functions and dependency on scipy
# 9: begin ; kasel
# wind=beseli( windpar*sqrt(1.-((tk-xp)/xm*2.)^2),0 )/ $
# beseli(windpar,0)
# end
if len(si) >=2: # output weighted set
setout = numpy.zeros((npoint,2))
setout[:,0] = tk
setout[:,1] = wind*setin[:,1]
else: # output window array
setout = wind
return setout
def fastftr(ftrin,npoint=4096,rrange=[0.,6.],kstep=0.04):
r"""
fastftr(ftrin,npoint=4096,rrange=[0.,6.],kstep=0.04):
PURPOSE:
This procedure calculates the Fast Fourier Transform of a set
INPUTS:
ftrin: a 2 or 3 col set with k,real(chi),imaginary(chi)
OUTPUTS:
This function returns a 4-columns array (ftrout) with
the congugare variable (R) in column 0, the modulus of the
FT in col 1, the real part in col 2 and the imaginary part in
col 3.
KEYWORD PARAMETERS:
rrange=[rmin,rmax] : range of the congugated variable for
the transformation (default = [0.,6.])
npoint= number of points of the the fft calculation (default = 4096)
kstep = step of the k variable for the interpolation (default=0.04)
MODIFICATION HISTORY:
Written by: Manuel Sanchez del Rio. ESRF, March, 1993
20141204 [email protected] Translated to python
"""
npoint2 = len(ftrin[:,0])
xmin = ftrin[0,0]
xmax = ftrin[-1,0]
b = numpy.zeros( (npoint,2) )
# ;
# ; creates the b set with the interpolated values of ftrin
# ;
b[:,0] = numpy.linspace(0.0,npoint-1,npoint) * kstep
b[:,1] = numpy.interp( b[:,0] , ftrin[:,0], ftrin[:,1], left=0.0, right=0.0)
# ; calculates the fft and generates the congugated variable (rr)
ff = numpy.fft.ifft(b[:,1])
rstep = numpy.pi / npoint / kstep
rr = numpy.linspace(0.0,npoint-1,npoint) * rstep
# ;
# ; prepare the results
# ;
coef = npoint * kstep / numpy.sqrt(numpy.pi) * numpy.sqrt(2.)
f12 = coef*numpy.real(ff) # real part of fft
f13 = coef*numpy.imag(ff)*(-1.) # imaginary part of fft
# ;
# ; cut the results to the selected interval in r (rrange)
# ;
goodi = (rr >= rrange[0]) & (rr <= rrange[1])
f13 = f13[goodi]
f12 = f12[goodi]
f10 = rr[goodi]
f11 = numpy.sqrt( f12*f12 + f13*f13)
# ;
# ; define the result array
# ;
fourier = numpy.zeros((len(f10),4))
fourier[:,0] = f10
fourier[:,1] = f11
fourier[:,2] = f12
fourier[:,3] = f13
return fourier
def fastbftr(fourier,npoint=4096,krange=[2.0,12.0],rstep=None,rmin=None,rmax=None):
r"""
fastbftr(fourier,npoint=4096,krange=[2.0,12.0],rstep=None,rmin=None,rmax=None)
PURPOSE:
This procedure calculates the Back Fast Fourier Transform of a set
INPUTS:
fourier: a 4 col set with r,modulus,real and imaginary part
of a Fourier Transform of an Exafs spectum, as produced
by FTR or FASTFTR procedures
KEYWORD PARAMETERS:
krange=[kmin,kmax] : range of the conjugated variable for
the transformation (default = [2,15])
npoint= number of points of the the fft calculation (default = 4096)
rstep = when this keyword is set then the fourier set is
interpolated using the indicated value as step. Otherwise
the fourier set is not interpolated.
rmin = the mimimun r for the back fourier filtering
rmax = the maximum r for the back fourier filtering
OUTPUTS:
This procedure returns a 4-columns set (backftr) with
the conjugated variable (k) in column 0, the real part of the
BFT in col 1, the modulus in col 2 and the phase in col 3.
MODIFICATION HISTORY:
Written by: Manuel Sanchez del Rio. ESRF March, 1993
98-10-26 [email protected] uses Dialog_Message for error messages.
20141204 [email protected] Translated to python
"""
kmin = krange[0]
kmax = krange[1]
npt = len(fourier[:,0])
fou = numpy.zeros((npoint,4))
if rmin == None:
rmin = (fourier[:,0]).min()
if rmax == None:
rmax = (fourier[:,0]).max()
#;
#; fill "fou" set
#;
if rstep == None: #;--- no interpolation
nn = int(npt/2)
rstep = fourier[nn+1,0] - fourier[nn,0]
rstep2 = fourier[nn+2,0] - fourier[nn+1,0]
rdiff = numpy.abs (rstep - rstep2)
print(' back rstep = %f'%(rstep))
print(' rdiff = %f'%rdiff)
if (rdiff >= 1e-6):
print('r griding is not regular; Use rstep keyword -> Abort')
return fou
ptstart = int(rmin/rstep)
print(' ptstart = %d'%ptstart)
print(' ptstart+npt = %d'%(ptstart+npt))
fou[ptstart:ptstart+npt,:]=fourier
else: #;--- interpolation
fou[:,0] = numpy.linspace(0,0,npoint-1,npoint)*rstep
fou[:,1] = numpy.interp(fou[:,0],fourier[:,0],fourier[:,1],left=0.0,right=0.0)
fou[:,2] = numpy.interp(fou[:,0],fourier[:,0],fourier[:,2],left=0.0,right=0.0)
fou[:,3] = numpy.interp(fou[:,0],fourier[:,0],fourier[:,3],left=0.0,right=0.0)
#;
#; call back fft
#;
c = fou[:,2] - 1.0j * fou[:,3]
af = numpy.fft.fft(c)
#;
#; create the array of the conjugated variable
#;
kstep = numpy.pi/npoint/rstep
kk = numpy.linspace(0.0,npoint-1,npoint)*kstep
#;
#; prepare the output array
#;
coef = npoint*kstep/numpy.sqrt(numpy.pi)*numpy.sqrt(2.) # coefficienu used for direct fft
coef1 = 2./coef # 2 because we are only
afr = coef1 * af.real # real part of back fft
afi = coef1 * af.imag # imaginary part of back fft
#;
#; cut the results to the selected interval in k (krange)
#;
goodi = (kk >= kmin) & (kk <= kmax)
afr = afr[goodi]
afi = afi[goodi]
afk = kk[goodi]
nptout = len(afr)
#;
#; define the output set
#;
backftr = numpy.zeros((nptout,4))
backftr[:,0] = afk # the conjugated variable (k [A^-1])
backftr[:,1] = afr # the real part of backftr or atra
backftr[:,2] = numpy.sqrt(afr*afr+afi*afi) # the modulus of backftr
backftr[:,3] = numpy.arctan2(afi,afr) # the phase
return backftr
if __name__ == '__main__':
#
# plotting setup
#
pltOk = True
try:
import matplotlib.pylab as plt
except ImportError:
pltOk = False
print("failed to import matplotlib. No on-line plots.")
#
#load mu(E); E in eV
fileIn = "Ge_calib.dat"
set0 = numpy.loadtxt(fileIn)
plotSet(set0,xtitle="photon Energy [eV]",ytitle="$\mu$ [a.u.]", \
toptitle="Raw data from: "+fileIn)
#;
#; Edge Value ---------------------------------------------------
#;
print('********************* Edge value ****************************')
e0,ie0 = getE0(set0)
print(' The selected Eo from the maximum of the derivative is %f eV'%(e0))
set0[:,0] -= e0
#plotSet(set0,xtitle="E-Eo [eV]",ytitle="$\mu$ [a.u.]", \
# toptitle="Raw data from: "+fileIn)
#;
#; Pre edge ----------------------------------------------------
#;
print('************************** Pre edge *********************')
ieFrom = 0
ieTo = ie0 - int(ie0*0.9)
# substract pre-edge linear fit
p = numpy.polyfit(set0[ieFrom:ieTo,0], set0[ieFrom:ieTo,1], 1)
setFit = numpy.copy(set0)
setFit[:,1] = (p[0] * setFit[:,0] + p[1])
plotSet(set0,over=setFit,xtitle="E-Eo [eV]",ytitle="$\mu$ [a.u.] ", \
toptitle="Pre-edge fit")
#set0[:,1] -= (p[0] * set0[:,0] + p[1])
set0[:,1] -= setFit[:,1]
# change abscissas to wavenumber
set0 = e2k(set0)
#plotSet(set0,xtitle="k [$A^{-1}$]",ytitle="$\mu - \mu_{pre}$ [a.u.] ", \
# toptitle="Raw data from: "+fileIn)
#;
#; Post edge ----------------------------------------------------
#;
print('************************** Post edge *********************')
#write file for polspl_test()
#numpy.savetxt("set22.dat",set0)
#print("File written to disk: set22.dat")
#fit0 = postEdge(set0,polDegree=[3,2,2,2],kmin=2.)
fit0 = postEdge(set0,polDegree=[3,2,2,3],knots=[2.0,4.0,6.0,10,20])
plotSet(set0,fit0,xtitle="k [$A^{-1}$]",ytitle=" fit ",toptitle="post edge",xmin=2,ymin=-.5,ymax=1.5)
#;
#; Normalization ----------------------------------------------------
#;
print('************************** Normalization *********************')
i_menu_nor = 2 # 1=experimental, 2=constant, 3=Lengeler-Eisenberg
#use E scale (mandatory)
set1 = k2e(set0)
fit1 = k2e(fit0)
# get jump
if ( (i_menu_nor == 2) or (i_menu_nor == 3)):
jump = getJump(set1)
print("Got jump value = %f"%jump)
if i_menu_nor == 3:
if e0 <= 0.01:
print("Error applying Lengeler-Eisenberg normalization:")
print(" E0 must be defined and not zero (E0=%f eV)"%e0)
print(" Forcing to 'constant' normalization")
i_menu_nor = 2
else:
set2 = set1
#set2[:,0] += e0
set2[:,1] = ( set1[:,1] - fit1[:,1] ) / jump / \
(1. - (8./3.)*(set1[:,0])/e0)
if i_menu_nor == 2:
set2 = set1
set2[:,1] = ( set1[:,1] - fit1[:,1] ) / jump
if i_menu_nor == 1:
set2 = set1
set2[:,1] = ( set1[:,1] - fit1[:,1] ) / fit1[:,1]
# back to k
set2 = e2k(set2)
#remove points with k<2
goodi = (set2[:,0] > 2.0)
set2 = set2[goodi,:]
plotSet(set2,xtitle="k [$A^{-1}$]",ytitle="$\chi$", toptitle="EXAFS")
#;
#; Fourier transform ----------------------------------------------------
#;
print('************************** Fourier transform *********************')
#numpy.savetxt("setMu.dat",set2)
#print("File setMu.dat written to file.")
#window
set2 = window_ftr(set2,window=8,windpar=3)
plotSet(set2,xtitle="k [$A^{-1}$]",ytitle="$\chi$", toptitle="WINDOWED EXAFS")
#FT
setFT = fastftr(set2,npoint=4096,rrange=[0.,7.],kstep=0.02)
plotSet(setFT,xtitle="R [$A$]",ytitle=" |FT| ", toptitle="EXAFS FT")
#;
#; Fourier filter ----------------------------------------------------
#;
print('************************** Fourier Filter *********************')
#BACK FT
setBFT = fastbftr(setFT,rmin=1.0,rmax=3.0,krange=[2.0,20.0])
plotSet(setBFT,xtitle="K [$A^{-1}$]",ytitle="$\chi$", toptitle="EXAFS BFT FILTERED in (1,3)")