forked from AI4Finance-Foundation/ElegantRL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathagent.py
329 lines (267 loc) · 15.3 KB
/
agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
from copy import deepcopy
import torch
from torch import Tensor
from config import Config
from net import QNet # DQN
from net import Actor, Critic # DDPG
from net import ActorPPO, CriticPPO # PPO
class AgentBase:
def __init__(self, net_dims: [int], state_dim: int, action_dim: int, gpu_id: int = 0, args: Config = Config()):
self.state_dim = state_dim
self.action_dim = action_dim
self.gamma = args.gamma
self.batch_size = args.batch_size
self.repeat_times = args.repeat_times
self.reward_scale = args.reward_scale
self.learning_rate = args.learning_rate
self.if_off_policy = args.if_off_policy
self.soft_update_tau = args.soft_update_tau
self.last_state = None # save the last state of the trajectory for training. `last_state.shape == (state_dim)`
self.device = torch.device(f"cuda:{gpu_id}" if (torch.cuda.is_available() and (gpu_id >= 0)) else "cpu")
act_class = getattr(self, "act_class", None)
cri_class = getattr(self, "cri_class", None)
self.act = self.act_target = act_class(net_dims, state_dim, action_dim).to(self.device)
self.cri = self.cri_target = cri_class(net_dims, state_dim, action_dim).to(self.device) \
if cri_class else self.act
self.act_optimizer = torch.optim.Adam(self.act.parameters(), self.learning_rate)
self.cri_optimizer = torch.optim.Adam(self.cri.parameters(), self.learning_rate) \
if cri_class else self.act_optimizer
self.criterion = torch.nn.SmoothL1Loss()
@staticmethod
def optimizer_update(optimizer, objective: Tensor):
optimizer.zero_grad()
objective.backward()
optimizer.step()
@staticmethod
def soft_update(target_net: torch.nn.Module, current_net: torch.nn.Module, tau: float):
# assert target_net is not current_net
for tar, cur in zip(target_net.parameters(), current_net.parameters()):
tar.data.copy_(cur.data * tau + tar.data * (1.0 - tau))
class AgentDQN(AgentBase):
def __init__(self, net_dims: [int], state_dim: int, action_dim: int, gpu_id: int = 0, args: Config = Config()):
self.act_class = getattr(self, "act_class", QNet)
self.cri_class = getattr(self, "cri_class", None) # means `self.cri = self.act`
AgentBase.__init__(self, net_dims, state_dim, action_dim, gpu_id, args)
self.act_target = deepcopy(self.act)
self.cri_target = deepcopy(self.cri)
self.act.explore_rate = getattr(args, "explore_rate", 0.25) # set for `self.act.get_action()`
# the probability of choosing action randomly in epsilon-greedy
def explore_env(self, env, horizon_len: int, if_random: bool = False) -> [Tensor]:
states = torch.zeros((horizon_len, self.state_dim), dtype=torch.float32).to(self.device)
actions = torch.zeros((horizon_len, 1), dtype=torch.int32).to(self.device)
rewards = torch.ones(horizon_len, dtype=torch.float32).to(self.device)
dones = torch.zeros(horizon_len, dtype=torch.bool).to(self.device)
ary_state = self.last_state
get_action = self.act.get_action
for i in range(horizon_len):
state = torch.as_tensor(ary_state, dtype=torch.float32, device=self.device)
if if_random:
action = torch.randint(self.action_dim, size=(1,))[0]
else:
action = get_action(state.unsqueeze(0))[0, 0]
ary_action = action.detach().cpu().numpy()
ary_state, reward, done, _ = env.step(ary_action)
if done:
ary_state = env.reset()
states[i] = state
actions[i] = action
rewards[i] = reward
dones[i] = done
self.last_state = ary_state
rewards = (rewards * self.reward_scale).unsqueeze(1)
undones = (1.0 - dones.type(torch.float32)).unsqueeze(1)
return states, actions, rewards, undones
def update_net(self, buffer) -> [float]:
obj_critics = 0.0
q_values = 0.0
update_times = int(buffer.cur_size * self.repeat_times / self.batch_size)
assert update_times >= 1
for i in range(update_times):
obj_critic, q_value = self.get_obj_critic(buffer, self.batch_size)
self.optimizer_update(self.cri_optimizer, obj_critic)
self.soft_update(self.cri_target, self.cri, self.soft_update_tau)
obj_critics += obj_critic.item()
q_values += q_value.item()
return obj_critics / update_times, q_values / update_times
def get_obj_critic(self, buffer, batch_size: int) -> (Tensor, Tensor):
with torch.no_grad():
state, action, reward, undone, next_state = buffer.sample(batch_size)
next_q = self.cri_target(next_state).max(dim=1, keepdim=True)[0]
q_label = reward + undone * self.gamma * next_q
q_value = self.cri(state).gather(1, action.long())
obj_critic = self.criterion(q_value, q_label)
return obj_critic, q_value.mean()
class AgentDDPG(AgentBase):
def __init__(self, net_dims: [int], state_dim: int, action_dim: int, gpu_id: int = 0, args: Config = Config()):
self.act_class = getattr(self, 'act_class', Actor) # get the attribute of object `self`, set Actor in default
self.cri_class = getattr(self, 'cri_class', Critic) # get the attribute of object `self`, set Critic in default
AgentBase.__init__(self, net_dims, state_dim, action_dim, gpu_id, args)
self.act_target = deepcopy(self.act)
self.cri_target = deepcopy(self.cri)
self.act.explore_noise_std = getattr(args, 'explore_noise', 0.1) # set for `self.act.get_action()`
def explore_env(self, env, horizon_len: int, if_random: bool = False) -> [Tensor]:
states = torch.zeros((horizon_len, self.state_dim), dtype=torch.float32).to(self.device)
actions = torch.zeros((horizon_len, self.action_dim), dtype=torch.float32).to(self.device)
rewards = torch.zeros(horizon_len, dtype=torch.float32).to(self.device)
dones = torch.zeros(horizon_len, dtype=torch.bool).to(self.device)
ary_state = self.last_state
get_action = self.act.get_action
for i in range(horizon_len):
state = torch.as_tensor(ary_state, dtype=torch.float32, device=self.device)
action = torch.rand(self.action_dim) * 2 - 1.0 if if_random else get_action(state.unsqueeze(0)).squeeze(0)
ary_action = action.detach().cpu().numpy()
ary_state, reward, done, _ = env.step(ary_action)
if done:
ary_state = env.reset()
states[i] = state
actions[i] = action
rewards[i] = reward
dones[i] = done
self.last_state = ary_state
rewards = rewards.unsqueeze(1)
undones = (1.0 - dones.type(torch.float32)).unsqueeze(1)
return states, actions, rewards, undones
def update_net(self, buffer) -> [float]:
obj_critics = obj_actors = 0.0
update_times = int(buffer.cur_size * self.repeat_times / self.batch_size)
assert update_times > 0
for i in range(update_times):
obj_critic, state = self.get_obj_critic(buffer, self.batch_size)
self.optimizer_update(self.cri_optimizer, obj_critic)
self.soft_update(self.cri_target, self.cri, self.soft_update_tau)
obj_critics += obj_critic.item()
action = self.act(state)
obj_actor = self.cri_target(state, action).mean()
self.optimizer_update(self.act_optimizer, -obj_actor)
self.soft_update(self.act_target, self.act, self.soft_update_tau)
obj_actors += obj_actor.item()
return obj_critics / update_times, obj_actors / update_times
def get_obj_critic(self, buffer, batch_size: int) -> (Tensor, Tensor):
with torch.no_grad():
states, actions, rewards, undones, next_states = buffer.sample(batch_size)
next_actions = self.act_target(next_states)
next_q_values = self.cri_target(next_states, next_actions)
q_labels = rewards + undones * self.gamma * next_q_values
q_values = self.cri(states, actions)
obj_critic = self.criterion(q_values, q_labels)
return obj_critic, states
class AgentPPO(AgentBase):
def __init__(self, net_dims: [int], state_dim: int, action_dim: int, gpu_id: int = 0, args: Config = Config()):
self.if_off_policy = False
self.act_class = getattr(self, "act_class", ActorPPO)
self.cri_class = getattr(self, "cri_class", CriticPPO)
AgentBase.__init__(self, net_dims, state_dim, action_dim, gpu_id, args)
self.ratio_clip = getattr(args, "ratio_clip", 0.25) # `ratio.clamp(1 - clip, 1 + clip)`
self.lambda_gae_adv = getattr(args, "lambda_gae_adv", 0.95) # could be 0.80~0.99
self.lambda_entropy = getattr(args, "lambda_entropy", 0.01) # could be 0.00~0.10
self.lambda_entropy = torch.tensor(self.lambda_entropy, dtype=torch.float32, device=self.device)
def explore_env(self, env, horizon_len: int) -> [Tensor]:
states = torch.zeros((horizon_len, self.state_dim), dtype=torch.float32).to(self.device)
actions = torch.zeros((horizon_len, self.action_dim), dtype=torch.float32).to(self.device)
logprobs = torch.zeros(horizon_len, dtype=torch.float32).to(self.device)
rewards = torch.zeros(horizon_len, dtype=torch.float32).to(self.device)
dones = torch.zeros(horizon_len, dtype=torch.bool).to(self.device)
ary_state = self.last_state
get_action = self.act.get_action
convert = self.act.convert_action_for_env
for i in range(horizon_len):
state = torch.as_tensor(ary_state, dtype=torch.float32, device=self.device)
action, logprob = [t.squeeze(0) for t in get_action(state.unsqueeze(0))[:2]]
ary_action = convert(action).detach().cpu().numpy()
ary_state, reward, done, _ = env.step(ary_action)
if done:
ary_state = env.reset()
states[i] = state
actions[i] = action
logprobs[i] = logprob
rewards[i] = reward
dones[i] = done
self.last_state = ary_state
rewards = (rewards * self.reward_scale).unsqueeze(1)
undones = (1 - dones.type(torch.float32)).unsqueeze(1)
return states, actions, logprobs, rewards, undones
def update_net(self, buffer) -> [float]:
with torch.no_grad():
states, actions, logprobs, rewards, undones = buffer
buffer_size = states.shape[0]
'''get advantages reward_sums'''
bs = 2 ** 10 # set a smaller 'batch_size' when out of GPU memory.
values = [self.cri(states[i:i + bs]) for i in range(0, buffer_size, bs)]
values = torch.cat(values, dim=0).squeeze(1) # values.shape == (buffer_size, )
advantages = self.get_advantages(rewards, undones, values) # advantages.shape == (buffer_size, )
reward_sums = advantages + values # reward_sums.shape == (buffer_size, )
del rewards, undones, values
advantages = (advantages - advantages.mean()) / (advantages.std(dim=0) + 1e-5)
assert logprobs.shape == advantages.shape == reward_sums.shape == (buffer_size,)
'''update network'''
obj_critics = 0.0
obj_actors = 0.0
update_times = int(buffer_size * self.repeat_times / self.batch_size)
assert update_times >= 1
for _ in range(update_times):
indices = torch.randint(buffer_size, size=(self.batch_size,), requires_grad=False)
state = states[indices]
action = actions[indices]
logprob = logprobs[indices]
advantage = advantages[indices]
reward_sum = reward_sums[indices]
value = self.cri(state).squeeze(1) # critic network predicts the reward_sum (Q value) of state
obj_critic = self.criterion(value, reward_sum)
self.optimizer_update(self.cri_optimizer, obj_critic)
new_logprob, obj_entropy = self.act.get_logprob_entropy(state, action)
ratio = (new_logprob - logprob.detach()).exp()
surrogate1 = advantage * ratio
surrogate2 = advantage * ratio.clamp(1 - self.ratio_clip, 1 + self.ratio_clip)
obj_surrogate = torch.min(surrogate1, surrogate2).mean()
obj_actor = obj_surrogate + obj_entropy.mean() * self.lambda_entropy
self.optimizer_update(self.act_optimizer, -obj_actor)
obj_critics += obj_critic.item()
obj_actors += obj_actor.item()
a_std_log = getattr(self.act, 'a_std_log', torch.zeros(1)).mean()
return obj_critics / update_times, obj_actors / update_times, a_std_log.item()
def get_advantages(self, rewards: Tensor, undones: Tensor, values: Tensor) -> Tensor:
advantages = torch.empty_like(values) # advantage value
masks = undones * self.gamma
horizon_len = rewards.shape[0]
next_state = torch.tensor(self.last_state, dtype=torch.float32).to(self.device)
next_value = self.cri(next_state.unsqueeze(0)).detach().squeeze(1).squeeze(0)
advantage = 0 # last_gae_lambda
for t in range(horizon_len - 1, -1, -1):
delta = rewards[t] + masks[t] * next_value - values[t]
advantages[t] = advantage = delta + masks[t] * self.lambda_gae_adv * advantage
next_value = values[t]
return advantages
class ReplayBuffer: # for off-policy
def __init__(self, max_size: int, state_dim: int, action_dim: int, gpu_id: int = 0):
self.p = 0 # pointer
self.if_full = False
self.cur_size = 0
self.max_size = max_size
self.device = torch.device(f"cuda:{gpu_id}" if (torch.cuda.is_available() and (gpu_id >= 0)) else "cpu")
self.states = torch.empty((max_size, state_dim), dtype=torch.float32, device=self.device)
self.actions = torch.empty((max_size, action_dim), dtype=torch.float32, device=self.device)
self.rewards = torch.empty((max_size, 1), dtype=torch.float32, device=self.device)
self.undones = torch.empty((max_size, 1), dtype=torch.float32, device=self.device)
def update(self, items: [Tensor]):
states, actions, rewards, undones = items
p = self.p + rewards.shape[0] # pointer
if p > self.max_size:
self.if_full = True
p0 = self.p
p1 = self.max_size
p2 = self.max_size - self.p
p = p - self.max_size
self.states[p0:p1], self.states[0:p] = states[:p2], states[-p:]
self.actions[p0:p1], self.actions[0:p] = actions[:p2], actions[-p:]
self.rewards[p0:p1], self.rewards[0:p] = rewards[:p2], rewards[-p:]
self.undones[p0:p1], self.undones[0:p] = undones[:p2], undones[-p:]
else:
self.states[self.p:p] = states
self.actions[self.p:p] = actions
self.rewards[self.p:p] = rewards
self.undones[self.p:p] = undones
self.p = p
self.cur_size = self.max_size if self.if_full else self.p
def sample(self, batch_size: int) -> [Tensor]:
ids = torch.randint(self.cur_size - 1, size=(batch_size,), requires_grad=False)
return self.states[ids], self.actions[ids], self.rewards[ids], self.undones[ids], self.states[ids + 1]