-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMaxSumSubArray.cpp
111 lines (100 loc) · 1.65 KB
/
MaxSumSubArray.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
#include<iostream>
#include<bits/stdc++.h>
using namespace std;
/*
Find a subarray such that its sum is maximum
Trivial approach :-
Find each and every subarray [i..j] and compute its sum
get largest subarray whose sum is maximum
TIme complexity - O(N^2),Space Complexity - O(1)
Optimized approach :-
suppose there is a subarray from [i..j]
sum(i..j) = sum([i..k]) + sum([k+1..j])
if sum(i..k) < 0 :
then we can ignore the subarray from i..k
as it will reduce our total sum of (i..j)
Time complexity - O(N),Space complexity - O(1)
*/
class Solution
{
vector<int> arr;
public:
Solution()
{
}
void fillArray(int temp)
{
arr.push_back(temp);
}
pair<int, int> sumSubArray_trivial()
{
int largest_sum = INT_MIN;
int st = -1;
for (int i = 0; i < arr.size(); i++)
{
int sum = 0;
for (int j = i; j < arr.size(); j++)
{
sum += arr[j];
if (sum > largest_sum)
{
largest_sum = sum;
st = i;
}
}
}
return {largest_sum, st};
}
int sumSubArray()
{
int maxr = INT_MIN;
for (auto it : arr)
{
maxr = max(maxr, it);
}
if (maxr < 0)
{
return maxr;
}
int sum = 0;
int largest_sum = 0;
int st = 0;
for (int i = 0; i < arr.size(); i++)
{
sum += arr[i];
if (sum < 0)
{
sum = arr[i];
if (sum < 0)
{
sum = 0;
}
st = i;
}
if (sum > largest_sum)
{
largest_sum = sum;
st = i;
}
}
return largest_sum;
}
};
int main()
{
int test_cases;
cin >> test_cases;
while (test_cases--)
{
Solution s;
int n;
cin >> n;
for (int i = 0; i < n; i++)
{
int temp ;
cin >> temp;
s.fillArray(temp);
}
cout << s.sumSubArray() << endl;
}
}