Skip to content

Latest commit

 

History

History
315 lines (232 loc) · 14.5 KB

File metadata and controls

315 lines (232 loc) · 14.5 KB

NLP

2021

  • Industry Scale Semi-Supervised Learning for Natural Language Understanding. [pdf]

    • Luoxin Chen, Francisco Garcia, Varun Kumar, He Xie, Jianhua Lu. NAACL 2021
  • Event Representation with Sequential, Semi-Supervised Discrete Variables. [pdf]

    • Mehdi Rezaee, Francis Ferraro. NAACL 2021
  • Framing Unpacked: A Semi-Supervised Interpretable Multi-View Model of Media Frames. [pdf]

    • Shima Khanehzar, Trevor Cohn, Gosia Mikolajczak, Andrew Turpin, Lea Frermann. NAACL 2021

2020

  • To BERT or Not to BERT: Comparing Task-specific and Task-agnostic Semi-Supervised Approaches for Sequence Tagging. [pdf]

    • Kasturi Bhattacharjee, Miguel Ballesteros, Rishita Anubhai, Smaranda Muresan, Jie Ma, Faisal Ladhak, Yaser Al-Onaizan. EMNLP 2020
  • A Probabilistic End-To-End Task-Oriented Dialog Model with Latent Belief States towards Semi-Supervised Learning. [pdf] [code]

    • Yichi Zhang, Zhijian Ou, Huixin Wang, Junlan Feng. EMNLP 2020
  • Semi-Supervised Bilingual Lexicon Induction with Two-way Interaction. [pdf] [code]

    • Xu Zhao, Zihao Wang, Hao Wu, Yong Zhang. EMNLP 2020
  • Local Additivity Based Data Augmentation for Semi-supervised NER. [pdf] [code]

    • Jiaao Chen, Zhenghui Wang, Ran Tian, Zichao Yang, Diyi Yang. EMNLP 2020
  • Semi-supervised New Event Type Induction and Event Detection. [pdf] [code]

    • Lifu Huang and Heng Ji. EMNLP 2020
  • MixText: Linguistically-Informed Interpolation of Hidden Space for Semi-Supervised Text Classification. [pdf] [code]

    • Jiaao Chen, Zichao Yang, Diyi Yang. ACL 2020
  • Semi-Supervised Dialogue Policy Learning via Stochastic Reward Estimation. [pdf]

    • Xinting Huang, Jianzhong Qi, Yu Sun, Rui Zhang. ACL 2020
  • SeqVAT: Virtual Adversarial Training for Semi-Supervised Sequence Labeling. [pdf]

    • Luoxin Chen, Weitong Ruan, Xinyue Liu, Jianhua Lu. ACL 2020
  • Semi-Supervised Semantic Dependency Parsing Using CRF Autoencoders. [pdf] [code]

    • Zixia Jia, Youmi Ma, Jiong Cai, Kewei Tu. ACL 2020
  • Revisiting self-training for neural sequence generation. [pdf] [code]

    • Junxian He, Jiatao Gu, Jiajun Shen, Marc'Aurelio Ranzato. ICLR 2020

2019

  • Leveraging Just a Few Keywords for Fine-Grained Aspect Detection Through Weakly Supervised Co-Training. [pdf]

    • Giannis Karamanolakis, Daniel Hsu, Luis Gravano. EMNLP 2019
  • Semi-supervised Semantic Role Labeling Using the Latent Words Language Model. [pdf]

    • Koen Deschacht, Marie-Francine Moens. EMNLP 2019
  • Semi-Supervised Semantic Role Labeling with Cross-View Training. [pdf]

    • Rui Cai, Mirella Lapata. EMNLP 2019
  • Delta-training: Simple Semi-Supervised Text Classification using Pretrained Word Embeddings. [pdf]

    • Hwiyeol Jo, Ceyda Cinarel. EMNLP 2019
  • Semi-supervised Entity Alignment via Joint Knowledge Embedding Model and Cross-graph Model. [pdf]

    • Chengjiang Li, Yixin Cao, Lei Hou, Jiaxin Shi, Juanzi Li, Tat-Seng Chua. EMNLP 2019
  • A Cross-Sentence Latent Variable Model for Semi-Supervised Text Sequence Matching. [pdf]

    • Jihun Choi, Taeuk Kim, Sang-goo Lee. ACL 2019
  • A Semi-Supervised Stable Variational Network for Promoting Replier-Consistency in Dialogue Generation. [pdf]

    • Jinxin Chang, Ruifang He, Longbiao Wang, Xiangyu Zhao, Ting Yang, Ruifang Wang. ACL 2019
  • No Army, No Navy: BERT Semi-Supervised Learning of Arabic Dialects. [pdf]

    • Chiyu Zhang, Muhammad Abdul-Mageedl. ACL 2019
  • Paraphrase Generation for Semi-Supervised Learning in NLU. [pdf]

    • Eunah Cho, He Xie, William M. Campbell. NAACL 2019
  • Graph-Based Semi-Supervised Learning for Natural Language Understanding. [pdf]

    • Zimeng Qiu, Eunah Cho, Xiaochun Ma, William Campbell. EMNLP 2019
  • Revisiting LSTM Networks for Semi-Supervised Text Classification via Mixed Objective Function. [pdf]

  • Devendra Singh Sachan, Manzil Zaheer, Ruslan Salakhutdinov. AAAI 2019

2018

  • Strong Baselines for Neural Semi-supervised Learning under Domain Shift. [pdf] [code]

    • Sebastian Ruder, Barbara Plank. ACL 2018
  • Simple and Effective Semi-Supervised Question Answering. [pdf]

    • Bhuwan Dhingra, Danish Danish, Dheeraj Rajagopal. NAACL 2018
  • Semi-Supervised Disfluency Detection. [pdf]

    • Feng Wang, Wei Chen, Zhen Yang, Qianqian Dong, Shuang Xu, Bo Xu. COLING 2018
  • Variational Sequential Labelers for Semi-Supervised Learning. [pdf]

    • Mingda Chen, Qingming Tang, Karen Livescu, Kevin Gimpel. EMNLP 2018
  • Towards Semi-Supervised Learning for Deep Semantic Role Labeling. [pdf]

    • Sanket Vaibhav Mehta, Jay Yoon Lee, Jaime Carbonell. EMNLP 2018
  • Adaptive Semi-supervised Learning for Cross-domain Sentiment Classification. [pdf]

    • Ruidan He, Wee Sun Lee, Hwee Tou Ng, Daniel Dahlmeier. EMNLP 2018
  • Heterogeneous Graph Attention Networks for Semi-supervised Short Text Classification. [pdf]

    • Hu Linmei, Tianchi Yang, Chuan Shi, Houye Ji, Xiaoli Li. EMNLP 2018
  • Semi-Supervised Learning for Neural Keyphrase Generation. [pdf]

    • Hai Ye, Lu Wang. EMNLP 2018
  • Semi-Supervised Sequence Modeling with Cross-View Training. [pdf]

    • Kevin Clark, Minh-Thang Luong, Christopher D. Manning, Quoc Le. ACL 2018
  • Semi-Supervised Learning with Declaratively Specified Entropy Constraints. [pdf]

    • Haitian Sun, William W. Cohen, Lidong Bing. NeurIPS 2018
  • Semi-Supervised Prediction-Constrained Topic Models. [pdf]

    • Michael Hughes, Gabriel Hope, Leah Weiner, Thomas McCoy, Roy Perlis, Erik Sudderth, Finale Doshi-Velez. AISTATS 2018
  • SEE: Towards Semi-Supervised End-to-End Scene Text Recognition. [pdf]

    • Christian Bartz, Haojin Yang, Christoph Meinel. AAAI 2018
  • Inferring Emotion from Conversational Voice Data: A Semi-Supervised Multi-Path Generative Neural Network Approach. [pdf]

    • Suping Zhou, Jia Jia, Qi Wang, Yufei Dong, Yufeng Yin, Kehua Leis. AAAI 2018

2017

  • Semi-supervised Multitask Learning for Sequence Labeling. [pdf] [code]

    • Marek Rei. ACL 2017
  • Semi-supervised Structured Prediction with Neural CRF Autoencoder. [pdf]

    • Xiao Zhang, Yong Jiang, Hao Peng, Kewei Tu, Dan Goldwasser. EMNLP 2017
  • Semi-supervised sequence tagging with bidirectional language models. [pdf]

    • Matthew Peters, Waleed Ammar, Chandra Bhagavatula, Russell Power. ACL 2017
  • Variational Autoencoder for Semi-Supervised Text Classification. [pdf]

    • Weidi Xu, Haoze Sun, Chao Deng, Ying Tan. AAAI 2017
  • Semi-Supervised Multi-View Correlation Feature Learning with Application to Webpage Classification. [pdf]

    • Xiao-Yuan Jing, Fei Wu, Xiwei Dong, Shiguang Shan, Songcan Chen. AAAI 2017
  • Adversarial Training Methods for Semi-Supervised Text Classification. [pdf] [code]

    • Chelsea Finn, Tianhe Yu, Justin Fu, Pieter Abbeel, Sergey Levine. ICLR 2017

2016

  • Dual Learning for Machine Translation. [pdf]

    • Yingce Xia, Di He, Tao Qin, Liwei Wang, Nenghai Yu, Tie-Yan Liu, Wei-Ying Ma. NeurIPS 2016
  • Semi-supervised Clustering for Short Text via Deep Representation Learning. [pdf]

    • Zhiguo Wang, Haitao Mi, Abraham Ittycheriah. CoNLL 2016
  • Semi-supervised Question Retrieval with Gated Convolutions. [pdf]

    • Tao Lei, Hrishikesh Joshi, Regina Barzilay, Tommi Jaakkola, Kateryna Tymoshenko, Alessandro Moschitti, Lluís Màrquez. NAACL 2016
  • Semi-supervised Word Sense Disambiguation with Neural Models. [pdf]

    • Dayu Yuan, Julian Richardson, Ryan Doherty, Colin Evans, Eric Altendorf. COLING 2016
  • Semi-Supervised Learning for Neural Machine Translation. [pdf]

    • Yong Cheng, Wei Xu, Zhongjun He, Wei He, Hua Wu, Maosong Sun, Yang Liu. ACL 2016
  • A Semi-Supervised Learning Approach to Why-Question Answering. [pdf]

    • Jong-Hoon Oh, Kentaro Torisawa, Chikara Hashimoto, Ryu Iida, Masahiro Tanaka, Julien Kloetzer. AAAI 2016
  • Semi-Supervised Multinomial Naive Bayes for Text Classification by Leveraging Word-Level Statistical Constraint. [pdf]

    • Li Zhao, Minlie Huang, Ziyu Yao, Rongwei Su, Yingying Jiang, Xiaoyan Zhu. AAAI 2016
  • Supervised and Semi-Supervised Text Categorization using LSTM for Region Embeddings. [pdf] [code]

    • Rie Johnson, Tong Zhang. ICML 2016

2015

  • Semi-Supervised Word Sense Disambiguation Using Word Embeddings in General and Specific Domains. [pdf]

    • Kaveh Taghipour, Hwee Tou Ng. NACCL 2015
  • Semi-supervised Sequence Learning. [pdf] [code]

    • Andrew M. Dai, Quoc V. Le. NeurIPS 2015
  • Semi-supervised Convolutional Neural Networks for Text Categorization via Region Embedding. [pdf]

    • Rie Johnson, Tong Zhang. NeurIPS 2015
  • Mining User Intents in Twitter: A Semi-Supervised Approach to Inferring Intent Categories for Tweets. [pdf]

    • Jinpeng Wang, Gao Cong, Xin Wayne Zhao, Xiaoming Li. AAAI 2015

2014

  • Semi-Supervised Matrix Completion for Cross-Lingual Text Classification. [pdf]
    • Min Xiao, Yuhong Guo. AAAI 2014

2013

  • Effective Bilingual Constraints for Semi-Supervised Learning of Named Entity Recognizers. [pdf]
    • Mengqiu Wang, Wanxiang Che, Christopher D. Manning. AAAI 2013

2011

  • Semi-Supervised Recursive Autoencoders for Predicting Sentiment Distributions. [pdf]
    • Richard Socher, Jeffrey Pennington, Eric H. Huang, Andrew Y. Ng, Christopher D. Manning. EMNLP 2011

2010

  • Cross Language Text Classification by Model Translation and Semi-Supervised Learning. [pdf]

    • Lei Shi, Rada Mihalcea, Mingjun Tian. EMNLP 2010
  • Simple Semi-Supervised Training of Part-Of-Speech Taggers. [pdf]

    • Anders Søgaard. ACL 2010
  • Word Representations: A Simple and General Method for Semi-Supervised Learning. [pdf]

    • Joseph Turian, Lev-Arie Ratinov, Yoshua Bengio. ACL 2010
  • A Semi-Supervised Method to Learn and Construct Taxonomies Using the Web. [pdf]

    • Zornitsa Kozareva, Eduard Hovy. EMNLP 2010

2009

  • A Simple Semi-supervised Algorithm For Named Entity Recognition. [pdf]
    • Wenhui Liao, Sriharsha Veeramachaneni. NACCL 2009

2008

  • SemiBoost: Boosting for Semi-Supervised Learning. [pdf]

    • Pavan Kumar Mallapragada, Rong Jin, Anil K. Jain, Yi Liu. IEEE Transactions on Pattern Analysis and Machine Intelligence 2008
  • Simple Semi-supervised Dependency Parsing. [pdf]

    • Terry Koo, Xavier Carreras, Michael Collins. ACL 2008

2006

  • Self-Training for Enhancement and Domain Adaptation of Statistical Parsers Trained on Small Datasets. [pdf]
    • Roi Reichart, Ari Rappoport. ACL 2007

2006

  • Effective Self-Training for Parsing. [pdf]

    • David McClosky, Eugene Charniak, Mark Johnson. ACL 2006
  • Reranking and Self-Training for Parser Adaptation. [pdf]

    • David McClosky, Eugene Charniak, Mark Johnson. ACL 2006