-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
executable file
·210 lines (188 loc) · 9.14 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import argparse
import torch
import time
import os
import numpy as np
from gym.spaces import Box, Discrete
from pathlib import Path
from torch.autograd import Variable
from tensorboardX import SummaryWriter
from utils.make_env import make_env
from utils.buffer import ReplayBuffer
from utils.env_wrappers import SubprocVecEnv, DummyVecEnv
from algorithms.maddpg import MADDPG
USE_CUDA = torch.cuda.is_available()
def make_parallel_env(env_id, n_rollout_threads, seed, discrete_action):
def get_env_fn(rank):
def init_env():
env = make_env(env_id, discrete_action=discrete_action)
env.seed(seed + rank * 1000)
np.random.seed(seed + rank * 1000)
return env
return init_env
if n_rollout_threads == 1:
return DummyVecEnv([get_env_fn(0)])
else:
return SubprocVecEnv([get_env_fn(i) for i in range(n_rollout_threads)])
def run(config):
model_dir = Path('./models') / config.env_id / config.model_name
if not model_dir.exists():
curr_run = 'run1'
else:
exst_run_nums = [int(str(folder.name).split('run')[1]) for folder in
model_dir.iterdir() if
str(folder.name).startswith('run')]
if len(exst_run_nums) == 0:
curr_run = 'run1'
else:
curr_run = 'run%i' % (max(exst_run_nums) + 1)
run_dir = model_dir / curr_run
log_dir = run_dir / 'logs'
os.makedirs(log_dir)
logger = SummaryWriter(str(log_dir))
torch.manual_seed(config.seed)
np.random.seed(config.seed)
if not USE_CUDA:
torch.set_num_threads(config.n_training_threads)
env = make_parallel_env(config.env_id, config.n_rollout_threads, config.seed,
config.discrete_action)
##################### INITIALIZE FROM SAVED? ###########################
if init_from_saved:
if model_path is not None:
maddpg = MADDPG.init_from_save(model_path)
print("Initialized from saved model")
# -------------------------------------------------------------------- #
else:
maddpg = MADDPG.init_from_env(env, agent_alg=config.agent_alg,
adversary_alg=config.adversary_alg,
tau=config.tau,
lr=config.lr,
hidden_dim=config.hidden_dim)
# used for learning (updates)
replay_buffer = ReplayBuffer(config.buffer_length, maddpg.nagents,
[obsp.shape[0] for obsp in env.observation_space],
[acsp.shape[0] if isinstance(acsp, Box) else acsp.n
for acsp in env.action_space])
# This is just to store the global rewards and not for updating the policies
g_storage_buffer = ReplayBuffer(config.buffer_length, maddpg.nagents,
[obsp.shape[0] for obsp in env.observation_space],
[acsp.shape[0] if isinstance(acsp, Box) else acsp.n
for acsp in env.action_space])
t = 0
for ep_i in range(0, config.n_episodes, config.n_rollout_threads):
print("Episodes %i-%i of %i" % (ep_i + 1,
ep_i + 1 + config.n_rollout_threads,
config.n_episodes))
obs = env.reset()
# obs.shape = (n_rollout_threads, nagent)(nobs), nobs differs per agent so not tensor
maddpg.prep_rollouts(device='cpu')
explr_pct_remaining = max(0, config.n_exploration_eps - ep_i) / config.n_exploration_eps
maddpg.scale_noise(config.final_noise_scale + (config.init_noise_scale - config.final_noise_scale) * explr_pct_remaining)
maddpg.reset_noise()
for et_i in range(config.episode_length):
# rearrange observations to be per agent, and convert to torch Variable
torch_obs = [Variable(torch.Tensor(np.vstack(obs[:, i])),
requires_grad=False)
for i in range(maddpg.nagents)]
# get actions as torch Variables
torch_agent_actions = maddpg.step(torch_obs, explore=True)
# convert actions to numpy arrays
agent_actions = [ac.data.numpy() for ac in torch_agent_actions]
# rearrange actions to be per environment
actions = [[ac[i] for ac in agent_actions] for i in range(config.n_rollout_threads)]
next_obs, rewards, dones, infos = env.step(actions, maddpg)
'''
Reward Shaping using D++, D.
The rewards now contain global as well as shaped rewards
Keep the global for logging, and use the shaped rewards for updates
'''
# Choose which reward to use
use_dpp = True
# DIFFERENCE REWARDS
d_rewards = []
for n in range(maddpg.nagents):
d_rewards.append([rewards[0][n][1]])
d_rewards = [d_rewards]
d_rewards = np.array(d_rewards)
# GLOBAL REWARDS
g_rewards = []
for n in range(maddpg.nagents):
g_rewards.append([rewards[0][n][0]])
g_rewards = [g_rewards]
g_rewards = np.array(g_rewards)
if use_dpp:
rewards = d_rewards
else:
rewards = g_rewards
# ----------------------------------------------------------- #
# Buffer used for updates
replay_buffer.push(obs, agent_actions, rewards, next_obs, dones)
# push global rewards into g_replay_buffer for plotting
g_storage_buffer.push(obs, agent_actions, g_rewards, next_obs, dones)
obs = next_obs
t += config.n_rollout_threads
if (len(replay_buffer) >= config.batch_size and
(t % config.steps_per_update) < config.n_rollout_threads):
if USE_CUDA:
maddpg.prep_training(device='gpu')
else:
maddpg.prep_training(device='cpu')
for u_i in range(config.n_rollout_threads):
for a_i in range(maddpg.nagents):
sample = replay_buffer.sample(config.batch_size,
to_gpu=USE_CUDA)
maddpg.update(sample, a_i, logger=logger)
maddpg.update_all_targets()
maddpg.prep_rollouts(device='cpu')
# Take out global reward from g_storage_buffer
ep_rews = g_storage_buffer.get_average_rewards(
config.episode_length * config.n_rollout_threads)
for a_i, a_ep_rew in enumerate(ep_rews):
logger.add_scalar('agent%i/mean_episode_rewards' % a_i, a_ep_rew, ep_i)
if ep_i % config.save_interval < config.n_rollout_threads:
os.makedirs(run_dir / 'incremental', exist_ok=True)
maddpg.save(run_dir / 'incremental' / ('model_ep%i.pt' % (ep_i + 1)))
maddpg.save(run_dir / 'model.pt')
maddpg.save(run_dir / 'model.pt')
env.close()
logger.export_scalars_to_json(str(log_dir / 'summary.json'))
logger.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--env_id", default='simple_spread', help="Name of environment")
parser.add_argument("--model_name", default='Exp',
help="Name of directory to store " +
"model/training contents")
parser.add_argument("--seed",
default=1, type=int,
help="Random seed")
parser.add_argument("--n_rollout_threads", default=1, type=int)
parser.add_argument("--n_training_threads", default=6, type=int)
parser.add_argument("--buffer_length", default=int(1e6), type=int)
parser.add_argument("--n_episodes", default=100000, type=int)
parser.add_argument("--episode_length", default=60, type=int)
parser.add_argument("--steps_per_update", default=100, type=int)
parser.add_argument("--batch_size",
default=1024, type=int,
help="Batch size for model training")
parser.add_argument("--n_exploration_eps", default=100000, type=int)
parser.add_argument("--init_noise_scale", default=0.3, type=float)
parser.add_argument("--final_noise_scale", default=0.0, type=float)
parser.add_argument("--save_interval", default=2000, type=int)
parser.add_argument("--hidden_dim", default=64, type=int)
parser.add_argument("--lr", default=0.01, type=float)
parser.add_argument("--tau", default=0.01, type=float)
parser.add_argument("--agent_alg",
default="MADDPG", type=str,
choices=['MADDPG', 'DDPG'])
parser.add_argument("--adversary_alg",
default="MADDPG", type=str,
choices=['MADDPG', 'DDPG'])
parser.add_argument("--discrete_action",
action='store_true')
config = parser.parse_args()
# INITIALIZE FROM SAVED MODEL ?
init_from_saved = False
config.discrete_action = False
model_path = ""
run(config)