-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path4180 Final.Rmd
519 lines (240 loc) · 12.2 KB
/
4180 Final.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
---
title: "4180 Chattanooga Crime Data"
author: "Thomas Raines, Yatri Patel"
date: "10/15/2021"
output:
html_document:
toc: yes
toc_float: yes
pdf_document:
toc: yes
---
## Libraries ------------------------------------------------------------------------------------------------
```{r}
library(tidyverse)
library(ggplot2)
library(dplyr)
library(reshape2)
library(lubridate)
library(sf)
library(raster)
library(incidence)
library(plotly)
```
#### Read the main police incident database
```{r}
#
police_incident <- read_csv("Police_Incident_Data.csv")
head(police_incident)
```
#### Read the tract populations dataframe
```{r}
censusPopData <- read_csv('Census_2020_Tract_Populations.csv')
head(censusPopData)
colnames(censusPopData)[3] <- "TRACT_ID"
```
#### Make a DataFrame for Income data
```{r}
censusIncData <- read_csv('2020_Median_Income.csv')
head(censusIncData)
```
#### Merge the income and population data by Tract ID
```{r}
#
censusData <- merge(censusPopData,censusIncData,by="TRACT_ID")
head(censusData)
```
#### Make shape file for Census Population
```{r}
##
censusPopShp <- read_sf("Census 2020 Tract Populations/geo_export_6ea9b8b9-f93b-41bd-8242-39b59cd81ddc.shp")
head(censusPopShp)
```
#### Make shape file for 2017 Median Income
```{r}
##
censusIncShp <- read_sf("2020 Median Income/geo_export_43a087a5-8ff8-4733-9a99-dd658a9c17f4.shp")
censusIncShp <- censusIncShp %>%
rename(tract = tract_id)
head(censusIncShp)
```
#### Merge our Shape Files to one big shape file
```{r}
##
sf::sf_use_s2(FALSE)
censusDataShp <- st_join(censusIncShp, censusPopShp)
head(censusDataShp)
plot(censusDataShp, max.plot = 31)
censusDataShp[is.na(censusDataShp)] <- 0
```
#### Plot our median Income by tract geometries
```{r}
##
income_plot <- ggplot() +
geom_sf(data = censusDataShp, aes(fill=censusDataShp$median_inc)) +
theme_classic() +
theme_dark() +
labs(title = "Median Income for Chattanooga Tracts", fill = "Median Income")
ggplotly(income_plot)
```
## START OF MILESTONE 2 -----------------------------------------------------------------------------------------------------------------------------------------------------
#### Make Plot for population:
```{r}
## Make Plot for population:
population_plot <- ggplot() +
geom_sf(data = censusDataShp, aes(fill=censusDataShp$total_popu)) +
theme_classic() +
theme_dark() +
labs(title = "Population for Chattanooga Tracts", fill = "Total Population")
ggplotly(population_plot)
```
#### Remove the Time Stamps from the Date Incidents
```{r}
##
police_incident$Date_Incident <- str_sub(police_incident$Date_Incident, 1, nchar(police_incident$Date_Incident)-12)
head(police_incident)
```
#### Make Incident Dates date type
```{r}
##
police_incident$Date_Incident <- as.Date(police_incident$Date_Incident, format = "%m/%d/%Y")
head(police_incident)
```
#### Plot number of incidents by date
```{r}
#
police_incident_by_date <- police_incident %>% group_by(Date_Incident) %>% summarise(frequency = n())
p <- ggplot(police_incident_by_date, aes(x = police_incident_by_date$Date_Incident, y = police_incident_by_date$frequency)) + geom_col(fill="#BE93D4") + geom_smooth() + xlab("Year") + ylab("Number of Incident") + labs(title = "Police incident by Date")
ggplotly(p)
```
#### Plot number of incident by month
```{r}
#
police_incident_by_month <- police_incident_by_date %>% group_by(Date_Incident=floor_date(Date_Incident, "month")) %>%
summarize(frequency=sum(frequency))
p <- ggplot(police_incident_by_month, aes(x = police_incident_by_month$Date_Incident, y = police_incident_by_month$frequency)) + geom_col(fill="#BE93D4") + geom_smooth() + xlab("Month") + ylab("Number of Incident") + labs(title = "Police Incident by Month")
ggplotly(p)
```
#### Plot number of incidents by year
```{r}
#
police_incident_by_year <- police_incident_by_month %>% group_by(Date_Incident=floor_date(Date_Incident, "year")) %>%
summarize(frequency=sum(frequency))
p <- ggplot(police_incident_by_year, aes(x = police_incident_by_year$Date_Incident, y = police_incident_by_year$frequency)) + geom_col(fill="#BE93D4") + geom_smooth() + xlab("Year") + ylab("Number of Incident") + labs(title = "Police Incident by Year")
ggplotly(p)
```
#### Plot police incident number by incident type
```{r}
#
police_incident_by_type <- police_incident %>% group_by(Incident_Type) %>% summarise(frequency = n())
police_incident_by_type$Incident_Type <- factor(police_incident_by_type$Incident_Type, levels = unique(police_incident_by_type$Incident_Type)[order(police_incident_by_type$frequency, decreasing = TRUE)])
p <- ggplot(police_incident_by_type, aes(x = police_incident_by_type$Incident_Type, y = police_incident_by_type$frequency)) + geom_col(fill="#BE93D4") + geom_smooth() + xlab("Type") + ylab("Number of Incident") + labs(title = "Police Incident by Incident Type")
ggplotly(p)
```
#### Plot police incident number by incident description
```{r}
#
police_incident_by_description <- police_incident %>% group_by(Incident_Description) %>% summarise(frequency = n())
police_incident_by_description$Incident_Description <- factor(police_incident_by_description$Incident_Description, levels = unique(police_incident_by_description$Incident_Description)[order(police_incident_by_description$frequency, decreasing = TRUE)])
p <- ggplot(police_incident_by_description, aes(x = police_incident_by_description$Incident_Description, y = police_incident_by_description$frequency)) + geom_col(fill="#BE93D4") + xlab("Description") + ylab("Number of Incident") + theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1)) + labs(title = "Police Incident by Incident Description")
ggplotly(p)
```
## START OF MILESTONE 3 (Part of these are now milestone 5) ----------------------------------------------------------------------------------------------------------------------------------
#### Plot number of incidents by specific month for 2020
```{r}
#
police_incident_by_month <- police_incident_by_date %>% group_by(Date_Incident=floor_date(Date_Incident, "month")) %>% summarize(frequency=sum(frequency))
police_incident_by_month_spec <- police_incident_by_month[police_incident_by_month$Date_Incident >= "2020-01-01" & police_incident_by_month$Date_Incident <= "2020-12-31",]
p <- ggplot(police_incident_by_month_spec, aes(x = police_incident_by_month_spec$Date_Incident, y = police_incident_by_month_spec$frequency)) + geom_col(fill="#BE93D4") + geom_smooth() + xlab("Month") + ylab("Number of Incident") + labs(title = "Police Incident for 2020 aggregated by Month")
ggplotly(p)
```
#### Make a 2020 Police incident dataframe
```{r}
##
police_incident_2020 <- police_incident[police_incident$Date_Incident >= "2020-01-01" & police_incident$Date_Incident <= "2020-12-31",]
head(police_incident_2020)
```
#### Refine Data Frame to Just show May (Highest Crime cases)
```{r}
##
pi_may_2020 <- police_incident[police_incident$Date_Incident >= "2020-05-01" & police_incident$Date_Incident <= "2020-05-31",]
head(pi_may_2020)
```
#### Make plotly plot for police incidents in the month of May 2020 by incident types (Milestone 5)
```{r}
##
inc_map_may_2020 <- ggplot() +
geom_sf(data = censusDataShp, aes()) +
geom_point(data = pi_may_2020, aes(x=pi_may_2020$Longitude, y=pi_may_2020$Latitude, color=pi_may_2020$Incident_Type)) + labs(title="Location of Police Inicidents in May of 2020", x="Longitude", y= "Latitude", color="Incident Type") +theme(legend.position="bottom")
ggplotly(inc_map_may_2020)
```
#### Refine DataFrame to show only part one crimes in may 2020
```{r}
##
pi_type1_crimes_2020 <- pi_may_2020 %>% filter(pi_may_2020$Incident_Type == "Part 1 Crimes")
```
#### Make Plotly plot for all part one police incidents in the month of may in 2020 (Milestone 5)
```{r}
##
p1_may_map <- ggplot() +
geom_sf(data = censusDataShp, aes()) +
geom_point(data = pi_type1_crimes_2020, aes(x=pi_type1_crimes_2020$Longitude, y=pi_type1_crimes_2020$Latitude, color=pi_type1_crimes_2020$Incident_Description)) + labs(title="Location of Part 1 Police Inicidents in May of 2020", x="Longitude", y= "Latitude", color="Incident Description") +theme(legend.position="bottom")
ggplotly(p1_may_map)
```
#### Refine DataFrame to show only robbery crimes in may 2020
```{r}
##
p1_Crimes_may_2020_robbery <- pi_may_2020 %>% filter(pi_may_2020$Incident_Description == "Robbery")
head(p1_Crimes_may_2020_robbery)
```
#### Make Plotly Plot to show where robberies occured in May 2020 (Milestone 5)
```{r}
##
p1_may_map_robbery <- ggplot() +
geom_sf(data = censusDataShp, aes()) +
geom_point(data = p1_Crimes_may_2020_robbery, aes(x=p1_Crimes_may_2020_robbery$Longitude, y=p1_Crimes_may_2020_robbery$Latitude, color=p1_Crimes_may_2020_robbery$Incident_Description)) + labs(title="Location of Robberies in May of 2020", x="Longitude", y= "Latitude", color="Incident Type")
ggplotly(p1_may_map_robbery)
```
## Start of Milestone 4 ------------------------------------------------------------------------------------------------------------------------------------------------------------------------
#### Make a plot overlaying the shapefile population data with the amounts of Part one crimes
```{r}
##
p <- ggplot() +
geom_sf(data = censusDataShp, aes(fill=censusDataShp$total_popu)) +
geom_point(data = p1_Crimes_may_2020_robbery, aes(x=p1_Crimes_may_2020_robbery$Longitude, y=p1_Crimes_may_2020_robbery$Latitude, color=p1_Crimes_may_2020_robbery$Incident_Description)) + labs(title="Location of Robberies in May of 2020", x="Longitude", y= "Latitude", color="Incident Type", fill= "Population")
ggplotly(p)
```
#### Make a plot overlaying the shapefile income data with the amounts of Part one crimes
```{r}
##
p <- ggplot() +
geom_sf(data = censusDataShp, aes(fill=censusDataShp$median_inc)) +
geom_point(data = p1_Crimes_may_2020_robbery, aes(x=p1_Crimes_may_2020_robbery$Longitude, y=p1_Crimes_may_2020_robbery$Latitude, color=p1_Crimes_may_2020_robbery$Incident_Description)) + labs(title="Location of Robberies in May of 2020", x="Longitude", y= "Latitude", color="Incident Type", fill= "Median Income")
ggplotly(p)
```
#### Make new dataframe for p1_Crimes_may_2020_shoplifting
```{r}
##
#Shoplifting
p1_Crimes_may_2020_shoplifting <- pi_may_2020 %>% filter(pi_may_2020$Incident_Description == "Shoplifting")
head(p1_Crimes_may_2020_shoplifting)
#combined dataframe for robbery and shoplifting
p1_shoplift_robbery <- rbind(p1_Crimes_may_2020_robbery,p1_Crimes_may_2020_shoplifting)
```
#### Plot for location of Robberies and shoplifting incidents based with median income (Milestone 5)
```{r}
##
p <- ggplot() + geom_sf(data = censusDataShp, aes(fill=censusDataShp$median_inc)) +
geom_point(data = p1_shoplift_robbery, aes(x=p1_shoplift_robbery$Longitude, y=p1_shoplift_robbery$Latitude, color= p1_shoplift_robbery$Incident_Description))+
labs(title="Location of Robberies and Shoplifting incidents in May of 2020", x="Longitude", y= "Latitude", color="Incident Description", fill= "Median Income")
ggplotly(p)
```
#### Graph Showing Locations of Robberies and Shoplifting based on population density (Milestone 5)
```{r}
##Graph Showing Locations of Robberies and Shoplifting based on population density (Milestone 5)
p <- ggplot() +
geom_sf(data = censusDataShp, aes(fill=censusDataShp$total_popu)) +
geom_point(data = p1_shoplift_robbery, aes(x=p1_shoplift_robbery$Longitude, y=p1_shoplift_robbery$Latitude, color= p1_shoplift_robbery$Incident_Description))+
labs(title="Location of Robberies and Shoplifting incidents in May of 2020", x="Longitude", y= "Latitude", color="Incident Description", fill= "Population")
ggplotly(p)
```