-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
155 lines (123 loc) · 3.76 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import os
import numpy as np
import pandas as pd
from inspiredco.critique import Critique
from zeno import (
DistillReturn,
MetricReturn,
ModelReturn,
ZenoOptions,
distill,
metric,
model,
)
client = Critique(api_key=os.environ["INSPIREDCO_API_KEY"])
@model
def pred_fns(name):
def pred(df, ops):
model_df = pd.read_csv(
ops.label_path + "/{}.tsv".format(name),
sep="\t",
quoting=3,
keep_default_na=False,
)
embed_df = pd.read_csv(
ops.label_path + "/ref_embed.tsv",
sep="\t",
keep_default_na=False,
quoting=3,
)
df_join = df[["text"]].merge(
model_df[["text", "translation"]], on="text", how="left"
)
df_join = df_join.merge(embed_df, on="text", how="left")
return ModelReturn(
model_output=df_join["translation"].fillna(""),
embedding=[np.fromstring(d[1:-1], sep=",") for d in df_join["embed"]],
)
return pred
@distill
def bert_score(df, ops):
eval_dict = df[["source", ops.output_column, "reference"]].to_dict("records")
for d in eval_dict:
d["references"] = [d.pop("reference")]
d["target"] = d.pop(ops.output_column)
result = client.evaluate(
metric="bert_score", config={"model": "bert-base-uncased"}, dataset=eval_dict
)
return DistillReturn(
distill_output=[round(r["value"], 6) for r in result["examples"]]
)
@distill
def bleu(df, ops):
eval_dict = df[[ops.output_column, "reference"]].to_dict("records")
for d in eval_dict:
d["references"] = [d.pop("reference")]
d["target"] = d.pop(ops.output_column)
result = client.evaluate(
metric="bleu",
config={"smooth_method": "add_k", "smooth-value": 1.0},
dataset=eval_dict,
)
return DistillReturn(
distill_output=[round(r["value"], 6) for r in result["examples"]]
)
@distill
def chrf(df, ops):
eval_dict = df[[ops.output_column, "reference"]].to_dict("records")
for d in eval_dict:
d["references"] = [d.pop("reference")]
d["target"] = d.pop(ops.output_column)
result = client.evaluate(
metric="chrf",
config={},
dataset=eval_dict,
)
return DistillReturn(
distill_output=[round(r["value"], 6) for r in result["examples"]]
)
@distill
def length_ratio(df, ops):
eval_dict = df[[ops.output_column, "reference"]].to_dict("records")
for d in eval_dict:
d["references"] = [d.pop("reference")]
d["target"] = d.pop(ops.output_column)
result = client.evaluate(
metric="length_ratio",
config={},
dataset=eval_dict,
)
return DistillReturn(
distill_output=[round(r["value"], 6) for r in result["examples"]]
)
@metric
def avg_bert_score(df, ops: ZenoOptions):
mean = df[ops.distill_columns["bert_score"]].mean()
if pd.notna(mean):
return MetricReturn(metric=mean)
else:
return MetricReturn(metric=0)
@metric
def avg_bleu(df, ops: ZenoOptions):
mean = df[ops.distill_columns["bleu"]].mean()
if pd.notna(mean):
return MetricReturn(metric=mean)
else:
return MetricReturn(metric=0)
@metric
def avg_chrf(df, ops: ZenoOptions):
mean = df[ops.distill_columns["chrf"]].mean()
if pd.notna(mean):
return MetricReturn(metric=mean)
else:
return MetricReturn(metric=0)
@metric
def avg_length_ratio(df, ops: ZenoOptions):
mean = df[ops.distill_columns["length_ratio"]].mean()
if pd.notna(mean):
return MetricReturn(metric=mean)
else:
return MetricReturn(metric=0)
@distill
def length(df, ops):
return DistillReturn(distill_output=df[ops.data_column].str.len())