-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathsrcnn.py
34 lines (27 loc) · 1.11 KB
/
srcnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
"""
Paper: Image Super-Resolution Using Deep Convolutional Networks
Url: https://arxiv.org/abs/1501.00092
Create by: zh320
Date: 2023/12/09
"""
import torch.nn as nn
import torch.nn.functional as F
from .modules import conv5x5, ConvAct
class SRCNN(nn.Module):
def __init__(self, in_channels, out_channels, upscale, kernel_setting='935',
act_type='relu'):
super(SRCNN, self).__init__()
if kernel_setting not in ['915', '935', '955']:
raise ValueError(f'Unknown kernel setting: {kernel_setting}. You can choose \
from ["915", "935", "955"].\n')
kernel_map = {'915':1, '935':3, '955':5}
self.upscale = upscale
self.layer1 = ConvAct(in_channels, 64, 9, act_type=act_type)
self.layer2 = ConvAct(64, 32, kernel_map[kernel_setting], act_type=act_type)
self.layer3 = conv5x5(32, out_channels)
def forward(self, x):
x = F.interpolate(x, scale_factor=self.upscale, mode='bicubic')
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
return x