-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathassignment.r
78 lines (68 loc) · 2.13 KB
/
assignment.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
# loading data
training <- read.csv("E:/machine learning/practical_ML/pml-training.csv")
testing <- read.csv("E:/machine learning/practical_ML/pml-testing.csv")
# since there are many NA values in many variables, it's better
# to omit them. Here we count the NA ratios in each column, if
# the ratio of NA values exceeds 95%, we delete that column.
naThr <- 0.95
nrow <- 19622
valC <- c()
for (i in 1:160){
colN <- training[,i]
nna <- sum(is.na(colN))/nrow
if (nna > naThr){valC <- append(valC,i)}
}
for (i in 1:160){
colN <- testing[,i]
nna <- sum(is.na(colN))/20
if (nna > naThr){valC <- append(valC,i)}
}
valC <- unique(valC)
# Only valid columns are reserved
training <- training[,-valC]
testing <- testing[,-valC]
#################training###########
trainDD <- training[,c(8:60)]
testDD <- testing[,c(8:60)]
svmMod <- e1071::svm(classe~., trainDD)
pred4 <- predict(svmMod,testDD)
pred4
# output the results using the provided function
pml_write_files = function(x){
n = length(x)
for(i in 1:n){
filename = paste0("problem_id_",i,".txt")
write.table(x[i],file=filename,quote=FALSE,row.names=FALSE,col.names=FALSE)
}
}
pml_write_files(pred4)
################### useless codes ###########
# library(e1071)
# trainP <- na.omit(training)
# svmMod <- e1071::svm(classe~., training[,-c(4,5)])
# pred <- predict(svmMod,testing[,-c(4,5)])
# library(party);
# cfi <- cforest(classe~., data=training[,-c(4,5)])
# aa <- varimp(cfi)
# sort(aa)
# library(e1071)
# inBelt <- grep("belt",colnames(training))
# inBelt <- append(inBelt,60)
# trainBelt <- training[,inBelt]
# testBelt <- testing[,inBelt]
# svmMod <- e1071::svm(classe~., trainBelt)
# pred <- predict(svmMod,testBelt)
#
# inArm <- grep("arm",colnames(training))
# inArm <- append(inArm,60)
# trainArm <- training[,inArm]
# testArm <- testing[,inArm]
# svmMod <- e1071::svm(classe~., trainArm)
# pred2 <- predict(svmMod,testArm)
#
# inDumbbell <- grep("dumbbell",colnames(training))
# inDumbbell <- append(inDumbbell,60)
# trainDumbbell <- training[,inDumbbell]
# testDumbbell <- testing[,inDumbbell]
# svmMod <- e1071::svm(classe~., trainDumbbell)
# pred3 <- predict(svmMod,testDumbbell)