-
Notifications
You must be signed in to change notification settings - Fork 354
/
Copy pathtestdtree.py
executable file
·690 lines (626 loc) · 26.8 KB
/
testdtree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
#!/usr/bin/env python
import functools
import random
import math
import unittest
import dtree
def repeated(fn):
@functools.wraps(fn)
def wrapper(obj, *args, **kwargs):
cRepeat = getattr(obj,"REPEAT") if hasattr(obj,"REPEAT") else 100
for _ in xrange(cRepeat):
fn(obj,*args,**kwargs)
wrapper.wrapped = fn
return wrapper
def randbool(dblP=0.5):
return random.random() < dblP
def randlist(lo,hi,n):
return map(lambda x: x(lo,hi), [random.randint]*n)
def build_one_instance(cAttrs,cValues,fxnGenWeight,fxnGenLabel):
listAttrs = randlist(0,cValues-1,cAttrs)
return dtree.Instance(listAttrs, fxnGenLabel(listAttrs), fxnGenWeight())
def build_instance_generator(dblLabelDist=0.5,cAttrs=10, cValues=4,
fxnGenWeight=None, fxnGenLabel=None):
if fxnGenWeight is None:
fxnGenWeight = lambda: 1.0
if fxnGenLabel is None:
fxnGenLabel = lambda _: randbool(dblLabelDist)
def build_instances(n=1):
build1 = lambda: build_one_instance(cAttrs,cValues,fxnGenWeight,
fxnGenLabel)
return [build1() for _ in xrange(n)]
build_instances.cAttrs = cAttrs
build_instances.cValues = cValues
return build_instances
def build_entropy_one_instances(cAttr,cValue):
listInstTrue = [dtree.Instance([0 for _ in xrange(cAttr)],True)
for f in xrange(cValue)]
listInstFalse = [dtree.Instance([0 for _ in xrange(cAttr)],False,0.5)
for f in xrange(2*cValue)]
for ixAttr in xrange(cAttr):
for ixValue in xrange(cValue):
ixFalse = 2*ixValue
listInstTemp = (listInstTrue[ixValue],
listInstFalse[ixFalse],
listInstFalse[ixFalse+1])
for inst in listInstTemp:
inst.listAttrs[ixAttr] = ixValue
return listInstTrue + listInstFalse
def force_instance_consistency(listInst):
dictMapping = {}
for inst in listInst:
tupleKey = tuple(inst.listAttrs)
if tupleKey in dictMapping:
inst.fLabel = dictMapping[tupleKey]
else:
dictMapping[tupleKey] = inst.fLabel
def build_consistent_generator(*args, **kwargs):
fxnGen = build_instance_generator(*args,**kwargs)
@functools.wraps(fxnGen)
def wrapper(cInst):
listInst = fxnGen(cInst)
force_instance_consistency(listInst)
return listInst
return wrapper
def build_jagged_instances():
return [dtree.Instance([0]*random.randint(5,10))
for _ in xrange(random.randint(25,30))]
class EntropyTest(unittest.TestCase):
REPEAT = 100
cInsts = 100
@repeated
def test_compute_entropy(self):
dblK = 1000000.0*random.random()
self.assertAlmostEqual(1.0, dtree.compute_entropy(dblK,dblK))
self.assertAlmostEqual(0.0, dtree.compute_entropy(0.0, dblK))
self.assertAlmostEqual(0.0, dtree.compute_entropy(dblK, 0.0))
@repeated
def test_separate_by_attribute(self):
fxnGen = build_instance_generator(0.5)
listInst = fxnGen(self.cInsts)
for ixAttr in xrange(fxnGen.cAttrs):
dictInst = dtree.separate_by_attribute(listInst, ixAttr)
setValues = set([inst.listAttrs[ixAttr] for inst in listInst])
self.assertEqual(len(setValues), len(dictInst))
for cValue,listInstSeparate in dictInst.iteritems():
for inst in listInstSeparate:
self.assertEqual(cValue, inst.listAttrs[ixAttr])
@repeated
def test_compute_entropy_of_split(self):
cAttrs = random.randint(2,20)
cValues = random.randint(1,30)
fxnGenOne = lambda _: build_entropy_one_instances(cAttrs, cValues)
fxnGenOne.cAttrs = cAttrs
fxnGenOne.cValues = cValues
fxnGenZero = build_instance_generator(0.0, cAttrs=3)
dblDelta = 0.01
for fxnGen,dblP in zip((fxnGenOne,fxnGenZero,),(1.0,0.0)):
listInst = fxnGen(self.cInsts)
for ixAttr in xrange(fxnGen.cAttrs):
dictInst = dtree.separate_by_attribute(listInst, ixAttr)
dblEntropy = dtree.compute_entropy_of_split(dictInst)
self.assertTrue(abs(dblEntropy - dblP) < dblDelta,
"%.3f not within %.3f of expected %.3f" %
(dblEntropy, dblDelta, dblP))
def test_compute_entropy_of_split_weighted(self):
fxnGenTrue = build_instance_generator(1.0)
fxnGenFalse = build_instance_generator(0.0, fxnGenWeight=lambda: 0.25)
cInst = 10
listInst = fxnGenTrue(cInst) + fxnGenFalse(4*cInst)
dblEntropy = dtree.compute_entropy_of_split({0: listInst})
self.assertAlmostEqual(1.0, dblEntropy)
@repeated
def test_choose_split_attribute(self):
cAttrs = 4
ixBest = random.randint(0,cAttrs-1)
def generate_label(listAttrs):
return bool(listAttrs[ixBest] % 2)
fxnGen = build_instance_generator(cAttrs=cAttrs,
fxnGenLabel=generate_label)
listInst = fxnGen(self.cInsts)
ixChosen,dictBest = dtree.choose_split_attribute(range(cAttrs),
listInst, 0.0)
self.assertEqual(ixBest,ixChosen)
# should come up w/something stronger
self.assertEqual(type(dictBest),dict)
@repeated
def test_check_for_common_label(self):
fxnGenTrue = build_instance_generator(1.0)
fxnGenFalse = build_instance_generator(0.0)
fxnGenNone = build_instance_generator()
listPair = ((fxnGenTrue,True),(fxnGenFalse,False),(fxnGenNone,None),)
for fxnGen,expected in listPair:
listInst = fxnGen(self.cInsts)
fLabel = dtree.check_for_common_label(listInst)
self.assertTrue(fLabel is expected, "%s is not %s"
% (fLabel,expected))
@repeated
def test_majority_label(self):
fxnGenTrue = build_instance_generator(1.0)
fxnGenFalse = build_instance_generator(0.0)
cLenTrue = random.randint(5,10)
cLenFalse = random.randint(5,10)
if cLenTrue == cLenFalse:
cLenTrue += 1
listInst = fxnGenTrue(cLenTrue) + fxnGenFalse(cLenFalse)
fMajorityLabel = dtree.majority_label(listInst)
self.assertEqual(fMajorityLabel, cLenTrue > cLenFalse)
@repeated
def test_majority_label_weighted(self):
dblScale = 25.0
def gen_insts_for_label(fLabel):
dblW = random.random() * dblScale
listInst = []
dblInstWeight = 0.0
while dblInstWeight < dblW:
dblNextWeight = random.random()
listInst.append(dtree.Instance([],fLabel,dblNextWeight))
dblInstWeight += dblNextWeight
return listInst,dblInstWeight
listInstT,dblT = gen_insts_for_label(True)
listInstF,dblF = gen_insts_for_label(False)
listInstAll = listInstT + listInstF
random.shuffle(listInstAll)
fMajorityLabel = dtree.majority_label(listInstAll)
self.assertEqual(dblT > dblF, fMajorityLabel)
def check_dt_members(dt):
if dt.is_leaf() and dt.is_node():
return False, ("Tree is not clearly a leaf or node. Only one"
" of fLabel and ixAttr should be not None.")
for cValue,dtChild in dt.dictChildren.iteritems():
fSuccess,sMsg = check_dt_members(dtChild)
if not fSuccess:
return fSuccess,sMsg
return True,None
class ConstructionTest(unittest.TestCase):
def check_dt(self,dtRoot,cMaxLevel):
def down(dt,cLvl):
self.assertTrue(cLvl <= cMaxLevel)
if dt.is_node():
for dtChild in dt.dictChildren.values():
down(dtChild,cLvl+1)
down(dtRoot,0)
def assert_dt_members(self,dt):
fSuccess,sMsg = check_dt_members(dt)
self.assertTrue(fSuccess, sMsg)
@repeated
def test_build_tree_rec_leaf(self):
fLabel = randbool()
listInst = [dtree.Instance([],fLabel)]*random.randint(1,3)
dt = dtree.build_tree_rec([],listInst,0.0,-1)
self.assert_dt_members(dt)
self.assertTrue(dt.is_leaf(), "dt was not a leaf")
self.assertEqual(dt.fLabel, fLabel)
@repeated
def test_build_tree_rec_stump(self):
pairBounds = (5,10)
build_list_inst_bool = (lambda f:
[dtree.Instance([int(f),randbool()],fLabel=f)
for _ in xrange(random.randint(*pairBounds))])
listInst = build_list_inst_bool(True) + build_list_inst_bool(False)
setIxAttr = set(range(2))
cPrevSetIxAttrLen = len(setIxAttr)
dt = dtree.build_tree_rec(setIxAttr, listInst, 0.0,-1)
self.assert_dt_members(dt)
self.assertEqual(cPrevSetIxAttrLen, len(setIxAttr),
"setIxAttr changed size in build_tree_rec")
self.assertTrue(dt.is_node(), "dt was not a node")
self.assertEqual(dt.ixAttr, 0)
dt0 = dt.dictChildren[0]
dt1 = dt.dictChildren[1]
for dtChild,fExpected in ((dt0,False), (dt1,True)):
self.assertTrue(dtChild.is_leaf(), "dtChild was not a leaf")
self.assertEqual(dtChild.fLabel, fExpected)
@repeated
def test_build_tree_depth_limit(self):
fxnGen = build_consistent_generator(10)
listInst = fxnGen(100)
cMaxLevel = random.randint(0,3)
dt = dtree.build_tree(listInst, cMaxLevel=cMaxLevel)
self.assert_dt_members(dt)
self.check_dt(dt,cMaxLevel)
@repeated
def test_build_tree_gain_limit(self):
listInst = []
cAttr = random.randint(5,10)
ixAttrImportant = random.randint(0,cAttr-1)
for _ in xrange(random.randint(25,150)):
listAttr = randlist(0,1,cAttr)
fLabel = bool(listAttr[ixAttrImportant])
listInst.append(dtree.Instance(listAttr,fLabel))
dt = dtree.build_tree(listInst, dblMinGain=0.55)
self.assert_dt_members(dt)
self.assertTrue(dt.is_node())
self.check_dt(dt,1)
@repeated
def test_count_instance_attributes(self):
cLen = random.randint(3,10)
listInst = [dtree.Instance([0]*cLen)]*random.randint(5,10)
cLenObserved = dtree.count_instance_attributes(listInst)
self.assertEqual(cLen, cLenObserved)
listInstJag = build_jagged_instances()
self.assertTrue(dtree.count_instance_attributes(listInstJag) is None)
def test_build_tree_raises(self):
self.assertRaises(TypeError, dtree.build_tree,
build_jagged_instances())
@repeated
def test_build_tree(self):
# test case size grows exponentially in this
cAttrs = random.randint(1,5)
listInst = []
for ixAttr in xrange(cAttrs):
cEach = 2**(cAttrs - ixAttr)
listAttrPrefixLeft = [1]*ixAttr
for _ in xrange(cEach):
listAttrSuffix = [0]*(cAttrs - ixAttr)
listAttr = listAttrPrefixLeft + listAttrSuffix
fLabel = bool(ixAttr % 2)
inst = dtree.Instance(listAttr,fLabel)
listInst.append(inst)
dt = dtree.build_tree(listInst)
for ixAttr in xrange(cAttrs-1):
self.assertEqual(dt.ixAttr, ixAttr)
dtLeft = dt.dictChildren[0]
self.assertTrue(dtLeft.is_leaf())
self.assertEqual(dtLeft.fLabel, bool(ixAttr % 2))
dt = dt.dictChildren[1]
self.assertTrue(dt.is_leaf())
self.assertEqual(dt.fLabel, not (cAttrs % 2))
@repeated
def test_build_tree_no_gain(self):
listAttr = randlist(0,5,10)
listInst = [dtree.Instance(listAttr, randbool())]*random.randint(25,30)
dt = dtree.build_tree(listInst)
fMajorityLabel = dtree.majority_label(listInst)
self.assertTrue(dt.is_leaf())
self.assertEquals(dt.fLabel, fMajorityLabel)
def build_random_tree(cAttr,cValue):
def down(listIxAttr):
if listIxAttr:
ixAttr = random.choice(listIxAttr)
listIxAttrNext = list(listIxAttr)
listIxAttrNext.remove(ixAttr)
dt = dtree.DTree(ixAttr=ixAttr,fDefaultLabel=randbool())
for cV in xrange(cValue):
dt.add(down(listIxAttrNext), cV)
return dt
return dtree.DTree(fLabel=randbool())
return down(range(cAttr))
def build_random_instance_from_dt(dt,cAttr=None):
listPath = []
while dt.is_node():
cV,dtChild = random.choice(dt.dictChildren.items())
listPath.append((dt.ixAttr,cV))
dt = dtChild
assert dt.is_leaf()
listAttr = []
cMaxAttr = max([ixAttr for ixAttr,_ in listPath])
dictPath = dict(listPath)
if cAttr is None:
cAttr = cMaxAttr + random.randint(1,5)
for ixAttr in xrange(cAttr):
cV = dictPath[ixAttr] if ixAttr in dictPath else random.randint(0,10)
listAttr.append(cV)
return dtree.Instance(listAttr, dt.fLabel),listPath
class PredictionTest(unittest.TestCase):
@repeated
def test_classify(self):
dt = build_random_tree(4,3)
for _ in xrange(5):
inst,listPath = build_random_instance_from_dt(dt)
fLabel = dtree.classify(dt,inst)
self.assertEqual(inst.fLabel, fLabel)
@repeated
def test_classify_unknown(self):
cValue = 3
dt = build_random_tree(4,cValue)
inst = dtree.Instance(randlist(cValue+1, cValue+5, 4))
fLabel = dtree.classify(dt,inst)
self.assertEqual(fLabel, dt.fDefaultLabel)
def check_instance_membership(listInstDb, listInstQueries):
def make_key(inst):
return tuple(inst.listAttrs + [inst.fLabel])
setDb = set(map(make_key, listInstDb))
for inst in listInstQueries:
tupleKey = make_key(inst)
if tupleKey not in setDb:
return False
return True
class EvaluationTest(unittest.TestCase):
REPEAT = 25
@repeated
def test_evaluate_classification(self):
def increase_values(inst):
listIncreased = [c+cValues+1 for c in inst.listAttrs]
return dtree.Instance(listIncreased, not fMajorityLabel)
def filter_unclassifiable(listInst):
dt = dtree.build_tree(listInst)
return [inst for inst in listInst
if dtree.classify(dt,inst) == inst.fLabel]
cValues = 2
fxnGen = build_instance_generator(cValues=cValues)
listInst = fxnGen(15)
force_instance_consistency(listInst)
listInst = filter_unclassifiable(listInst)
fMajorityLabel = dtree.majority_label(listInst)
listInstImpossible = map(increase_values,listInst)
listInstTest = listInst + listInstImpossible
cvf = dtree.TreeFold(listInst, listInstTest)
rslt = dtree.evaluate_classification(cvf)
self.assertEqual(len(listInst), len(rslt.listInstCorrect))
self.assertEqual(len(listInstImpossible), len(rslt.listInstIncorrect))
self.assertTrue(check_instance_membership(
listInst, rslt.listInstCorrect), "Missing correct instances")
self.assertTrue(check_instance_membership(
listInstImpossible, rslt.listInstIncorrect),
"Missing incorrect instances")
@repeated
def test_weight_corrrect_incorrect(self):
def make_list(cLen):
listI = []
dblSum = 0.0
for _ in xrange(cLen):
dbl = math.exp(-random.random() - 0.1) * 10.0
listI.append(dtree.Instance([],randbool(),dbl))
dblSum += dbl
return listI,dblSum
listInstCorrect,dblCorrect = make_list(random.randint(0,10))
listInstIncorrect,dblIncorrect = make_list(random.randint(0,10))
rslt = dtree.EvaluationResult(listInstCorrect, listInstIncorrect,None)
dblC,dblI = dtree.weight_correct_incorrect(rslt)
self.assertAlmostEqual(dblCorrect,dblC)
self.assertAlmostEqual(dblIncorrect,dblI)
def build_foldable_instances(lo=3,hi=10):
cFold = random.randint(lo,hi)
cInsts = random.randint(1,10)*cFold
return [dtree.Instance([i],randbool()) for i in range(cInsts)],cFold
def build_folded_set(listInst):
return set([inst.listAttrs[0] for inst in listInst])
def is_valid_cvf_builder(obj, fxnBuildCvf, fxnCheckEach, fUseValidation):
listInst,cFold = build_foldable_instances()
cFoldSize = len(listInst)/cFold
setI = build_folded_set(listInst)
cFoldsYielded = 0
for cvf in fxnBuildCvf(list(listInst),cFold):
if not fxnCheckEach(cvf):
return False
setTrain = build_folded_set(cvf.listInstTraining)
setTest = build_folded_set(cvf.listInstTest)
setValidation = (build_folded_set(cvf.listInstValidate)
if fUseValidation else set())
obj.assertEqual(cFoldSize, len(setTest))
if fUseValidation:
obj.assertEqual(cFoldSize, len(setTest))
cFoldsInTraining = cFold - 2
else:
cFoldsInTraining = cFold - 1
obj.assertEqual(cFoldSize*cFoldsInTraining, len(setTrain))
obj.assertEqual(setI - setTrain - setValidation, setTest)
obj.assertEqual(setI - setTest - setValidation, setTrain)
obj.assertEqual(setI - setTrain - setTest, setValidation)
cFoldsYielded += 1
return cFold == cFoldsYielded
class CrossValidationTest(unittest.TestCase):
REPEAT = 15
@repeated
def test_yield_cv_folds(self):
fxnCheck = lambda cvf: isinstance(cvf, dtree.TreeFold)
is_valid_cvf_builder(self, dtree.yield_cv_folds, fxnCheck,False)
@repeated
def test_cv_score(self):
def label_weight(listInst, fLabel):
dblWeight = 0.0
for inst in listInst:
if inst.fLabel == fLabel:
dblWeight += inst.dblWeight
return dblWeight
cValues = 4
fxnGen = build_consistent_generator(cValues=cValues,
fxnGenWeight=random.random)
cInst = random.randint(30,60)
listLeft = fxnGen(cInst)
listRight = [dtree.Instance([cAttr+cValues+1
for cAttr in inst.listAttrs],
inst.fLabel) for inst in fxnGen(cInst)]
fMajL = dtree.majority_label(listLeft)
fMajR = dtree.majority_label(listRight)
iterableFolds = [dtree.TreeFold(listLeft,listRight),
dtree.TreeFold(listRight,listLeft)]
dblScore = dtree.cv_score(iterableFolds)
dblL = label_weight(listRight, fMajL)
dblR = label_weight(listLeft, fMajR)
dblTotalWeight = sum([inst.dblWeight for inst in listRight + listLeft])
self.assertAlmostEqual((dblL + dblR)/dblTotalWeight, dblScore)
@repeated
def test_yield_cv_folds_with_validation(self):
fxnCheck = lambda cvf: isinstance(cvf, dtree.PrunedFold)
is_valid_cvf_builder(self, dtree.yield_cv_folds_with_validation,
fxnCheck, True)
class PruneTest(unittest.TestCase):
REPEAT = 10
@repeated
def test_prune_tree(self):
"""
Test bottom-up pruning with a validation set.
The test builds a random tree, then randomly chooses a node at which
to prune. To induce pruning, the test does the following:
- set the default label of the node to T
- set the default label of the nodes, and actual label of the leaves,
of all descendants to F
- generate a large number of T instances that follow a path
through the node
- set the default labels of all ancestors of the node to F
- prune the tree
- repeat for the node's parent, continuing up to the root.
"""
def set_labels(dtRoot,f):
def down(dt):
if dt.is_leaf():
dt.fLabel = f
dt.fDefaultLabel = f
map(down,dt.dictChildren.values())
down(dtRoot)
def check_passes(dtRoot,dtCheck,inst):
def down(dt):
assert not dt.is_leaf()
assert len(dt.dictChildren) == cValue
dt = dt.dictChildren[inst.listAttrs[dt.ixAttr]]
if dt == dtCheck:
return
down(dtRoot)
cAttr = random.randint(2,4)
cValue = random.randint(2,4)
dtBase = build_random_tree(cAttr,cValue)
listPath = []
listAttrs = []
listDt = []
fTargetValue = True#randbool()
set_labels(dtBase, not fTargetValue)
dt = dtBase
while not dt.is_leaf():
ixValue = random.choice(dt.dictChildren.keys())
listPath.append(ixValue)
listAttrs.append(dt.ixAttr)
#print ixValue
dt = dt.dictChildren[ixValue]
#print "-----------------------"
while listPath:
listPath.pop()
dt = dtRoot = dtBase
for ixValue in listPath:
#print ixValue
dt = dt.dictChildren[ixValue]
assert dt.is_node()
#print "-----------------------------------"
dt.fDefaultLabel = fTargetValue
listInst = []
fxnEnd = lambda: randlist(0,cValue-1,cAttr - len(listPath))
for _ in xrange(random.randint(1,10)):
listValue = listPath + fxnEnd()
listInstAttr = [None for _ in xrange(cAttr)]
assert len(listValue) == cAttr
for ixValue,ixAttr in zip(listValue,listAttrs):
listInstAttr[ixAttr] = ixValue
inst = dtree.Instance(listInstAttr, fTargetValue)
check_passes(dtRoot,dt,inst)
listInst.append(inst)
dtree.prune_tree(dtRoot,listInst)
dt = dtRoot
for ix,ixValue in enumerate(listPath):
assert dt.ixAttr == listAttrs[ix]
self.assertTrue(dt.is_node(), str(dtRoot))
self.assertTrue(ixValue in dt.dictChildren)
dt = dt.dictChildren[ixValue]
self.assertTrue(dt.is_leaf(), str(dt))
def is_stump(dt):
for cV,dtChild in dt.dictChildren.iteritems():
if not dtChild.is_leaf():
return False
return True
fxnRandomWeight = lambda: random.random()*1000.0 + 0.1
build_random_weight = build_instance_generator(fxnGenWeight=fxnRandomWeight)
class BoostTest(unittest.TestCase):
REPEAT = 10
@repeated
def test_normalize_weights(self):
cInst = 100
listInst = build_random_weight(cInst)
def weight_sum():
return sum([inst.dblWeight for inst in listInst], 0.0)
self.assertTrue(weight_sum() > 1.0)
dtree.normalize_weights(listInst)
self.assertAlmostEqual(1.0, weight_sum())
@repeated
def test_init_weights(self):
cInst = 100
listInst = build_random_weight(cInst)
dtree.init_weights(listInst)
for inst in listInst:
self.assertAlmostEqual(1.0/float(cInst), inst.dblWeight)
@repeated
def test_classifier_error(self):
cInst = 100
listInst = build_instance_generator()(cInst)
ix = random.randint(0,cInst)
rslt = dtree.EvaluationResult(listInst[:ix], listInst[ix:], None)
self.assertAlmostEqual(float(cInst-ix)/float(cInst),
dtree.classifier_error(rslt))
@repeated
def test_classifier_weight(self):
dblError = random.random()
dblWeight = dtree.classifier_weight(dblError)
dblFrac = math.exp(2.0*dblWeight)
self.assertAlmostEqual(dblError, 1.0/(dblFrac + 1.0))
@repeated
def test_update_weight_unnormalized(self):
dblWeight = random.normalvariate(0.0,1.0)
dblClassifierWeight = random.normalvariate(0.0,10.0)
fLabel = randbool()
fClassifiedLabel = randbool()
inst = dtree.Instance([],fLabel=fLabel,dblWeight=dblWeight)
dtree.update_weight_unnormalized(inst, dblClassifierWeight,
fClassifiedLabel)
dblWeightNew = inst.dblWeight
dblWeightNew /= dblWeight
dblWeightNew = math.log(dblWeightNew)
dblWeightNew /= dblClassifierWeight
if fLabel == fClassifiedLabel:
self.assertAlmostEqual(-1.0, dblWeightNew)
else:
self.assertAlmostEqual(1.0, dblWeightNew)
@repeated
def test_one_round_boost(self):
fxnGen = build_consistent_generator()
cInst = 100
listInst = fxnGen(cInst)
for inst in listInst:
inst.listAttrs[0] = int(inst.fLabel)
listInstIncorrect = random.sample(listInst,cInst/10)
for inst in listInstIncorrect:
inst.fLabel = not inst.listAttrs[0]
inst.dblWeight = 0.1
dt,dblError,dblCferWeight = dtree.one_round_boost(listInst,1)
self.assertTrue(is_stump(dt))
self.assertAlmostEqual(1.0/91.0, dblError)
self.assertAlmostEqual(dtree.classifier_weight(dblError),
dblCferWeight)
self.assertAlmostEqual(1.0, sum([inst.dblWeight for inst in listInst]))
@repeated
def test_boost(self):
listAttr = randlist(0,5,10)
listInst = [dtree.Instance(listAttr, True) for _ in xrange(100)]
listInstFalse = random.sample(listInst,10)
for inst in listInstFalse:
inst.fLabel = False
listInstCopy = [inst.copy() for inst in listInst]
br = dtree.boost(listInstCopy)
dblWeightExpected = dtree.classifier_weight(0.1)
self.assertAlmostEqual(br.listDblCferWeight[0], dblWeightExpected)
@repeated
def test_boost_maxrounds(self):
cRound = random.randint(2,25)
listInst = build_consistent_generator()(100)
br = dtree.boost(listInst, cMaxRounds=cRound)
self.assertTrue(len(br.listCfer) <= cRound)
self.assertTrue(len(br.listDblCferWeight) <= cRound)
@repeated
def test_classify_boosted(self):
def build_stump(fPolarity):
dt = dtree.DTree(ixAttr=0,fDefaultLabel=True)
dt.add(dtree.DTree(fLabel=fPolarity),0)
dt.add(dtree.DTree(fLabel=not fPolarity),1)
return dt
cCfer = 10
listCfer = [build_stump(bool(i%2)) for i in xrange(cCfer)]
listWeight = [math.exp(-i) for i in xrange(cCfer)]
inst = dtree.Instance([int(randbool())], randbool())
fLabel = dtree.classify_boosted(dtree.BoostResult(listWeight,listCfer),
inst)
self.assertEqual(bool(inst.listAttrs[0]), fLabel)
@repeated
def test_yield_boosted_folds(self):
fxnCheck = lambda cvf: isinstance(cvf,dtree.BoostedFold)
is_valid_cvf_builder(self, dtree.yield_boosted_folds, fxnCheck, False)
if __name__ == "__main__":
import sys
sys.exit(unittest.main())