-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathLinearRegressionRC.py
175 lines (137 loc) · 5.78 KB
/
LinearRegressionRC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# Color Line Following Example with PID Steering
#
# For this script to work properly you should point the camera at a line at a
# 45 or so degree angle. Please make sure that only the line is within the
# camera's field of view.
import sensor, image, pyb, math, time
from pyb import Servo
from pyb import LED
from pyb import UART
from pyb import Pin
switch_pin = Pin('P7', Pin.IN, Pin.PULL_DOWN)
uart = UART(3, 19200) # Use UART 3 (pins 4 and 5)
blue_threshold = (0, 100, -128, 127, -128, -35) # L A B
binary_threshold = (57, 255)
rois = [0,40,320,190]
TARGET_POINTS = [(70, 50), # (x, y), clockwise from top left
(285, 50),
(319, 239),
(1,239)]
cruise_speed = 1575 # how fast should the car drive, range from 1000 (full backwards) to 2000 (full forwards). 1500 is stopped. 1575 is slowest it can go
steering_direction = -1 # use this to revers the steering if your car goes in the wrong direction
steering_gain = 30 # calibration for your car's steering sensitivity
steering_center = -5 # set to your car servo's center point
kp = 0.4 # P term of the PID
ki = 0.0 # I term of the PID
kd = 0.3 # D term of the PID
i_term = 0
old_error = 0
measured_angle = 0
set_angle = 0 # this is the desired steering angle (straight ahead)
old_time = pyb.millis()
led_time = pyb.millis()
RC_control = True # Set to false if you're just benchtop testing
red_led = LED(1)
green_led = LED(2)
blue_led = LED(3)
ir_led = LED(4)
led_state = True
def led_control(x):
if (x&1)==0: red_led.off()
elif (x&1)==1: red_led.on()
if (x&2)==0: green_led.off()
elif (x&2)==2: green_led.on()
if (x&4)==0: blue_led.off()
elif (x&4)==4: blue_led.on()
if (x&8)==0: ir_led.off()
elif (x&8)==8: ir_led.on()
def constrain(value, min, max):
if value < min :
return min
if value > max :
return max
else:
return value
def steer(angle):
angle = int(round((angle+steering_center)*steering_gain))
ch1 = str(angle) # must convert to text to send via Serial
ch2 = str(cruise_speed) # send throttle data, too
print("Steering command", angle)
uart.write(ch1) # send to the Arduino. It looks for channel outputs in order, seperated by a "," and ended with a "\n"
uart.write(",")
uart.write(ch2)
uart.write("\n")
def update_pid(measured_angle):
global old_error, i_term
now = pyb.millis()
dt = now - old_time
error = set_angle - measured_angle
de = error - old_error
p_term = kp * error
i_term += ki * error
i_term = constrain(i_term, 0, 100)
d_term = (de / dt) * kd
old_error = error
output = steering_direction * (p_term + i_term + d_term)
output = constrain(output, -50, 50)
return output
# Camera setup...
clock = time.clock() # Tracks FPS.
sensor.reset() # Initialize the camera sensor.
sensor.__write_reg(0x6B, 0x22) # switches camera into advanced calibration mode. See this for more: http://forums.openmv.io/viewtopic.php?p=1358#p1358
sensor.set_pixformat(sensor.RGB565)
sensor.set_framesize(sensor.QVGA) # use QVGA for speed.
sensor.set_vflip(True)
sensor.set_auto_gain(True) # do some calibration at the start
sensor.set_auto_whitebal(True)
sensor.skip_frames(60) # Let new settings take effect.
sensor.set_auto_gain(False) # now turn off autocalibration before we start color tracking
sensor.set_auto_whitebal(False)
while(True):
clock.tick() # Track elapsed milliseconds between snapshots().
switch = switch_pin.value() # get value, 0 or 1
if switch == 1 or not RC_control: # Teensy says you're in MV mode
img = sensor.snapshot().lens_corr(strength = 2.8, zoom = 1)
img.binary([blue_threshold])
line = img.get_regression([binary_threshold],roi=rois, robust = False) # do linear regression for desired color
if (line):
img.draw_line(line.line(), color = 127)
offset = line.line()[2]
constrain(offset,0,320)
offset = offset - 160
offset_angle = math.acos(offset/320)
offset_angle = math.degrees(offset_angle) - 90
measured_angle = -math.atan2(line.line()[1]-line.line()[3],line.line()[0]-line.line()[2])
print(line.line())
# Convert angle in radians to degrees.
measured_angle = math.degrees(measured_angle)
measured_angle = 90 - measured_angle # make straight ahead 0
measured_angle = constrain(measured_angle, -90, 90)
net_angle = 2*offset_angle - measured_angle
# print("Offset Angle: ", offset_angle, "Measured Angle: ", measured_angle, "Net Angle: ", net_angle)
# print("FPS %f" % clock.fps())
now = pyb.millis()
if now > old_time + 0.02 : # time has passed since last measurement; do PID at 50Hz
if now > led_time + 1000: # switch LED every second
if led_state == True:
led_control(0) # turn off LED
led_state = False
else:
led_control(2) # turn on Green LED
led_state = True
led_time = now # reset time counter
steer_angle = update_pid(net_angle)
old_time = now
steer (steer_angle)
else:
now = pyb.millis()
if now > old_time + 1.0 : # time has passed since last measurement
if now > led_time + 1000: # switch LED every second
print("Under RC control")
if led_state == True:
led_control(0) # turn off LED
led_state = False
else:
led_control(4) # turn on Blue LED
led_state = True
led_time = now # reset time counter