A comprehensive collection of neural networks, machine learning models, and programming tutorials focusing on scientific and engineering applications, particularly in material science.
This repository contains implementations, tutorials, and examples spanning various domains:
- Machine learning algorithms and data analysis
- Neural network architectures (RNN, CNN)
- Scientific computing applications
- Programming fundamentals in Python
- Database integrations using various technologies
- Docker configurations for database environments
Stanford's Machine Learning course implementations:
01_Linear_Regression.py
: Basic linear regression implementation02_Zomato_Data_Analysis.py
: Data analysis of restaurant data03_Wine_Quality_Prediction.py
: ML model for wine quality prediction- Supporting datasets: Wine-Quality.csv, Zomato-data-.csv
MIT's Deep Learning course implementations:
01_Learn_Gradient_Descent_Using_Linear_Regression.py
: Custom gradient descent implementation02_Recurrent_Neural_Network.py
&03_Recurrent_Neural_Network.py
: RNN implementations04_Sin_Wave_Generator_Using_RNN.py
: Generating sine waves using RNNs05_Convolution_Neural_Network.ipynb
: CNN implementation
Material science research for conference:
Algae_Biofuel_Data_for_MIST_conf.py
: Analysis of algae biofuel dataAlgae_Biofuel_Data_for MIST conf.csv
: Dataset for biofuel analysis
Programming tutorials organized by topic:
01_Basics
: Fundamental programming concepts02_Basics_OOP
: Object-oriented programming principles03_Decorators
: Python decorator patterns and usage04_Error_Handling
: Exception management techniques05_Database_Sqlite3
: SQLite database integration06_Handling_APIs
: API interaction examples07_Database_MongoDB
: MongoDB integration
Docker configurations for database environments:
mongodb
: MongoDB container configurationmysql
: MySQL container setuppostgresql
: PostgreSQL configurationredis
: Redis server and client setup
- Programming Languages: Python
- Machine Learning: scikit-learn, NumPy, Pandas
- Deep Learning: PyTorch, TensorFlow (via implementations)
- Data Visualization: Matplotlib, Seaborn
- Notebooks: Marimo (Jupyter alternative)
- Databases: SQLite, MongoDB, MySQL, PostgreSQL, Redis
- Containerization: Docker
-
Install the required packages:
pip install -r requirements.txt
-
For database examples, use the Docker configurations:
cd docker-databases/<database-name> docker-compose up
-
Python Scripts: Execute with Python interpreter
python <script_name>.py
-
Marimo Notebooks: Run with marimo
marimo run <notebook_name>.py
- CS229 (Machine Learning): Explore statistical models and data analysis techniques
- MIT_6.S191 (Deep Learning): Learn neural network architectures and implementations
- MIST_Conference: Review material science analyses and research code
- Tutorials: Step through various programming concepts from basic to advanced
This repository contains educational materials and implementations for learning purposes.