-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgenerate_data_traj.py
154 lines (129 loc) · 4.56 KB
/
generate_data_traj.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import argparse
import io
from PIL import Image
import numpy as np
import torch
import pickle
import pathlib
import ruamel.yaml as yaml
import os
import sys
parent_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))
sys.path.append(parent_dir)
dreamer_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), './dreamerv3-torch'))
sys.path.append(dreamer_dir)
import tools
def gen_one_traj_img(x_min, x_max, y_min, y_max, u_max, radius, dt, v, dpi, rand=-1):
x_max -= 0.1
y_max -= 0.1
x_min += 0.1
y_min += 0.1
center = (0.0, 0.0)
states = torch.zeros(3)
while torch.abs(states[0]) < radius and torch.abs(states[1]) < radius:
states = torch.rand(3)
states[0] *= x_max - x_min
states[1] *= y_max - y_min
states[0] += x_min
states[1] += y_min
states[2] = torch.atan2(-states[1], -states[0]) + np.random.normal(0, 2) # np.random.normal(0, 1) this is what is in paper
if states[2] < 0:
states[2] += 2*np.pi
if states[2] > 2*np.pi:
states[2] -= 2*np.pi
state_obs = []
img_obs = []
state_gt = []
dones = []
acs = []
mapping = torch.tensor([-u_max, 0, u_max])
for t in range(100):
if torch.abs(states[0]) > 1.0 or torch.abs(states[1]) > 1.0:
dones[-1] = 1
break
if rand == -1:
random_integers = torch.randint(0, 3, (1,))
else:
random_integers = torch.tensor([rand])
# Map 0 to -1, 1 to 0, and 2 to 1
ac = mapping[random_integers].item()
states_next = torch.rand(3)
states_next[0] = states[0] + v*dt*torch.cos(states[2])
states_next[1] = states[1] + v*dt*torch.sin(states[2])
states_next[2] = states[2] + dt*ac
state_obs.append(states[2].numpy()) # get to observe theta
state_gt.append(states.numpy()) # gt state
if t == 99:
dones.append(1)
else:
dones.append(1)
acs.append(ac)
fig,ax = plt.subplots()
plt.xlim([-1.1, 1.1])
plt.ylim([-1.1, 1.1])
plt.axis('off')
fig.set_size_inches( 1, 1 )
# Create the circle patch
circle = patches.Circle(center, radius, edgecolor=(1,0,0), facecolor='none')
# Add the circle patch to the axis
ax.add_patch(circle)
plt.quiver(states[0], states[1], dt*v*torch.cos(states[2]), dt*v*torch.sin(states[2]), angles='xy', scale_units='xy', minlength=0,width=0.1, scale=0.18,color=(0,0,1), zorder=3)
plt.scatter(states[0], states[1],s=20, c=(0,0,1), zorder=3)
plt.subplots_adjust(left=0, right=1, top=1, bottom=0)
buf = io.BytesIO()
plt.savefig(buf, format='png', dpi=dpi)
buf.seek(0)
# Load the buffer content as an RGB image
img = Image.open(buf).convert('RGB')
img_array = np.array(img)
img_obs.append(img_array)
plt.close()
states = states_next
return state_obs, acs, state_gt, img_obs, dones
def generate_trajs(x_min, x_max, y_min, y_max, u_max, r, dt, v, num_pts, dpi):
demos = []
for i in range(num_pts):
print('demo: ', i)
state_obs, acs, state_gt, img_obs, dones = gen_one_traj_img(x_min, x_max, y_min, y_max, u_max, r, dt, v, dpi)
demo = {}
demo['obs'] = {'image': img_obs, 'state': state_obs, 'priv_state': state_gt}
demo['actions'] = acs
demo['dones'] = dones
demos.append(demo)
with open('wm_demos'+str(dpi)+'.pkl', 'wb') as f:
pickle.dump(demos, f)
def recursive_update(base, update):
for key, value in update.items():
if isinstance(value, dict) and key in base:
recursive_update(base[key], value)
else:
base[key] = value
if __name__=='__main__':
parser = argparse.ArgumentParser()
config, remaining = parser.parse_known_args()
yaml = yaml.YAML(typ="safe", pure=True)
configs = yaml.load(
(pathlib.Path(sys.argv[0]).parent / "./configs.yaml").read_text()
)
name_list = ["defaults"]
defaults = {}
for name in name_list:
recursive_update(defaults, configs[name])
parser = argparse.ArgumentParser()
for key, value in sorted(defaults.items(), key=lambda x: x[0]):
arg_type = tools.args_type(value)
parser.add_argument(f"--{key}", type=arg_type, default=arg_type(value))
final_config = parser.parse_args(remaining)
num_pts = final_config.num_pts
x_min = final_config.x_min
x_max = final_config.x_max
y_min = final_config.y_min
y_max = final_config.y_max
u_max = final_config.turnRate
dt = final_config.dt
v = final_config.speed
r = final_config.obs_r
dpi = final_config.size[0]
demos = generate_trajs(x_min, x_max, y_min, y_max, u_max, r, dt, v, num_pts, dpi)