forked from vtolani95/HumANav-Release
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsim_state.py
371 lines (317 loc) · 13.8 KB
/
sim_state.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
import numpy as np
import json
from utils.utils import generate_config_from_pos_3, euclidean_dist2
from utils.utils import color_red, color_reset
""" These are smaller "wrapper" classes that are visible by other
gen_agents/humans and saved during state deepcopies
NOTE: they are all READ-ONLY (only getters)
"""
class AgentState():
def __init__(self, a=None, name=None, goal_config=None, start_config=None,
current_config=None, trajectory=None, collided=False, end_acting=False,
collision_cooldown=-1, radius=0, color=None):
"""Initialize an AgentState with either an Agent instance (a) or all the individual fields"""
if a is not None:
self.name = a.get_name()
self.goal_config = a.get_goal_config()
# TODO: get start/current configs from self.trajectory
self.start_config = a.get_start_config()
self.current_config = a.get_current_config()
# deepcopying the trajectory to not have memory aliasing
# for multiple sim-states spanning a wide timerange
self.trajectory = a.get_trajectory(deepcpy=True)
self.collided = a.get_collided()
self.end_acting = a.get_end_acting()
self.collision_cooldown = a.get_collision_cooldown()
self.radius = a.get_radius()
self.color = a.get_color()
else:
self.name = name
self.goal_config = goal_config
self.start_config = start_config
self.current_config = current_config
self.trajectory = trajectory
self.collided = collided
self.end_acting = end_acting
self.collision_cooldown = collision_cooldown
self.radius = radius
self.color = color
def get_name(self):
return self.name
def get_current_config(self):
return self.current_config
def get_start_config(self):
return self.start_config
def get_goal_config(self):
return self.goal_config
def get_trajectory(self):
return self.trajectory
def get_collided(self):
return self.collided
def get_radius(self):
return self.radius
def get_color(self):
return self.color
def get_collision_cooldown(self):
return self.collision_cooldown
def get_pos3(self):
return self.get_current_config().to_3D_numpy()
def to_json(self, include_start_goal=False):
name_json = SimState.to_json_type(self.name)
# NOTE: the configs are just being serialized with their 3D positions
if include_start_goal:
start_json = SimState.to_json_type(
self.get_start_config().to_3D_numpy())
goal_json = SimState.to_json_type(
self.get_goal_config().to_3D_numpy())
current_json = SimState.to_json_type(
self.get_current_config().to_3D_numpy())
# trajectory_json = "None"
radius_json = self.radius
json_dict = {}
json_dict['name'] = name_json
# NOTE: the start and goal (of the robot) are only sent when the environment is sent
if include_start_goal:
json_dict['start_config'] = start_json
json_dict['goal_config'] = goal_json
json_dict['current_config'] = current_json
# json_dict['trajectory'] = trajectory_json
json_dict['radius'] = radius_json
# returns array (python list) to be json'd in_simstate
return json_dict
@ staticmethod
def from_json(json_str: dict):
name = json_str['name']
if 'start_config' in json_str.keys():
start_config = \
generate_config_from_pos_3(json_str['start_config'])
else:
start_config = None
if 'goal_config' in json_str.keys():
goal_config = \
generate_config_from_pos_3(json_str['goal_config'])
else:
goal_config = None
current_config = \
generate_config_from_pos_3(json_str['current_config'])
trajectory = None # unable to recreate trajectory
radius = json_str['radius']
collision_cooldown = -1
collided = False
end_acting = False
color = None
return AgentState(None, name, goal_config, start_config, current_config,
trajectory, collided, end_acting, collision_cooldown,
radius, color)
class HumanState(AgentState):
def __init__(self, human):
self.appearance = human.get_appearance()
# Initialize the agent state class
super().__init__(a=human)
def get_appearance(self):
return self.appearance
class SimState():
def __init__(self, environment: dict = None, pedestrians: dict = None,
robots: dict = None, sim_t: float = None, wall_t: float = None,
delta_t: float = None, episode_name: str = None, max_time: float = None,
ped_collider: str = ""):
self.environment = environment
# no distinction between prerecorded and auto agents
self.pedestrians = pedestrians # new dict that the joystick will be sent
self.robots = robots
self.sim_t = sim_t
self.wall_t = wall_t
self.delta_t = delta_t
self.robot_on = True # TODO: why keep this if not using explicitly?
self.episode_name = episode_name
self.episode_max_time = max_time
self.ped_collider = ped_collider
def get_environment(self):
return self.environment
def get_map(self):
return self.environment["map_traversible"]
def get_pedestrians(self):
return self.pedestrians
def get_robots(self):
return self.robots
def get_robot(self):
return list(self.robots.values())[0]
def get_sim_t(self):
return self.sim_t
def get_wall_t(self):
return self.wall_t
def get_delta_t(self):
return self.delta_t
def get_robot_on(self):
return self.robot_on
def get_episode_name(self):
return self.episode_name
def get_episode_max_time(self):
return self.episode_max_time
def get_collider(self):
return self.ped_collider
def get_all_agents(self, include_robot=False):
all_agents = {}
all_agents.update(self.get_pedestrians())
if include_robot:
all_agents.update(self.get_robots())
return all_agents
def to_json(self, robot_on=True, send_metadata=False, termination_cause=None):
json_dict = {}
json_dict['robot_on'] = robot_on # true or false
sim_t_json = self.get_sim_t()
if robot_on: # only send the world if the robot is ON
if send_metadata:
environment_json = \
SimState.to_json_dict(self.get_environment())
episode_json = self.get_episode_name()
episode_max_time_json = self.get_episode_max_time()
else:
environment_json = {} # empty dictionary
episode_json = {}
episode_max_time_json = {}
# serialize all other fields
ped_json = \
SimState.to_json_dict(self.get_pedestrians())
# NOTE: the robot only includes its start/goal posn if sending metadata
robots_json = \
SimState.to_json_dict(self.get_robots(),
include_start_goal=send_metadata)
delta_t_json = self.get_delta_t()
# append them to the json dictionary
json_dict['environment'] = environment_json
json_dict['pedestrians'] = ped_json
json_dict['robots'] = robots_json
json_dict['delta_t'] = delta_t_json
json_dict['episode_name'] = episode_json
json_dict['episode_max_time'] = episode_max_time_json
else:
json_dict['termination_cause'] = termination_cause
# sim_state should always have time
json_dict['sim_t'] = sim_t_json
return json.dumps(json_dict, indent=1)
@ staticmethod
def init_agent_dict(json_str_dict):
agent_dict = {}
for d in json_str_dict.keys():
agent_dict[d] = AgentState.from_json(json_str_dict[d])
return agent_dict
@ staticmethod
def from_json(json_str: dict):
new_state = SimState()
new_state.environment = json_str['environment']
new_state.pedestrians = \
SimState.init_agent_dict(json_str['pedestrians'])
new_state.robots = SimState.init_agent_dict(json_str['robots'])
new_state.sim_t = json_str['sim_t']
new_state.delta_t = json_str['delta_t']
new_state.robot_on = json_str['robot_on']
new_state.episode_name = json_str['episode_name']
new_state.episode_max_time = json_str['episode_max_time']
new_state.wall_t = None
new_state.ped_collider = ""
return new_state
@ staticmethod
def to_json_type(elem, include_start_goal=False):
""" Converts an element to a json serializable type. """
if isinstance(elem, np.int64) or isinstance(elem, np.int32):
return int(elem)
if isinstance(elem, np.ndarray):
return elem.tolist()
if isinstance(elem, dict):
# recursive for dictionaries within dictionaries
return SimState.to_json_dict(elem, include_start_goal=include_start_goal)
if isinstance(elem, AgentState):
return elem.to_json(include_start_goal=include_start_goal)
if type(elem) is type: # elem is a class
return str(elem)
else:
return str(elem)
@ staticmethod
def to_json_dict(param_dict, include_start_goal=False):
""" Converts params_dict to a json serializable dict."""
json_dict = {}
for key in param_dict.keys():
json_dict[key] = SimState.to_json_type(param_dict[key],
include_start_goal=include_start_goal)
return json_dict
"""BEGIN SimState utils"""
def get_all_agents(sim_state: dict, include_robot=False):
all_agents = {}
all_agents.update(get_agents_from_type(sim_state, "pedestrians"))
if include_robot:
all_agents.update(get_agents_from_type(sim_state, "robots"))
return all_agents
def get_agents_from_type(sim_state, agent_type: str):
if callable(getattr(sim_state, 'get_' + agent_type, None)):
getter_agent_type = getattr(sim_state, 'get_' + agent_type, None)
return getter_agent_type()
return {} # empty dict
def compute_next_vel(sim_state_prev, sim_state_now, agent_name: str):
old_agent = sim_state_prev.get_all_agents()[agent_name]
old_pos = old_agent.get_current_config().to_3D_numpy()
new_agent = sim_state_now.get_all_agents()[agent_name]
new_pos = new_agent.get_current_config().to_3D_numpy()
# calculate distance over time
delta_t = sim_state_now.get_sim_t() - sim_state_prev.get_sim_t()
return euclidean_dist2(old_pos, new_pos) / delta_t
def compute_agent_state_velocity(sim_states: list, agent_name: str):
if len(sim_states) > 1: # need at least two to compute differences in positions
if agent_name in get_all_agents(sim_states[-1]).keys():
agent_velocities = []
for i in range(len(sim_states)):
if i > 0:
prev_sim_s = sim_states[i - 1]
now_sim_s = sim_states[i]
speed = compute_next_vel(prev_sim_s, now_sim_s, agent_name)
agent_velocities.append(speed)
else:
agent_velocities.append(0.0) # initial velocity is 0
return agent_velocities
else:
print("%sAgent" % color_red, agent_name,
"is not in the SimStates%s" % color_reset)
else:
return []
def compute_agent_state_acceleration(sim_states: list, agent_name: str, velocities: list = None):
if len(sim_states) > 1: # need at least two to compute differences in velocities
# optionally compute velocities as well
if velocities is None:
velocities = compute_agent_state_velocity(sim_states, agent_name)
if agent_name in get_all_agents(sim_states[-1]).keys():
agent_accels = []
for i, this_vel in enumerate(velocities):
if i > 0:
# compute delta_t between sim states
sim_st_now = sim_states[i]
sim_st_prev = sim_states[i - 1]
delta_t = sim_st_now.get_sim_t() - sim_st_prev.get_sim_t()
# compute delta_v between velocities
last_vel = velocities[i - 1]
# calculate speeds over time
accel = (this_vel - last_vel) / delta_t
agent_accels.append(accel)
if i == len(sim_states) - 1:
# last element gets no acceleration
break
return agent_accels
else:
print("%sAgent" % color_red, agent_name,
"is not in the SimStates%s" % color_reset)
else:
return []
def compute_all_velocities(sim_states: list):
all_velocities = {}
for agent_name in get_all_agents(sim_states[-1]).keys():
assert(isinstance(agent_name, str)) # keyed by name
all_velocities[agent_name] = \
compute_agent_state_velocity(sim_states, agent_name)
return all_velocities
def compute_all_accelerations(sim_states: list):
all_accels = {}
# TODO: add option of providing precomputed velocities list
for agent_name in get_all_agents(sim_states[-1]).keys():
assert(isinstance(agent_name, str)) # keyed by name
all_accels[agent_name] = compute_agent_state_acceleration(
sim_states, agent_name)
return all_accels