Skip to content

This project is part of the course Applied Data Science with Python

Notifications You must be signed in to change notification settings

FabianHeu/DataScienceProject

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Covid-19 Data - A Data Science Project

This project is part of the course Applied Data Science with Python

Name: Fabian Heudorfer

Course: Applied Data Science with Python

Project Description:

Based on the Covid-19 dataset from ‘Our World In Data’ https://ourworldindata.org I want to visualize the effects on all countries in the world.

Our World in Data:

https://github.com/owid/covid-19-data/

https://github.com/owid/covid-19-data/blob/master/public/data/README.md

https://raw.githubusercontent.com/owid/covid-19-data/master/public/data/owid-covid-data.csv

All Available Colums in the Dataset:

['iso_code', 'continent', 'location', 'date', 'total_cases', 'new_cases', 'new_cases_smoothed', 'total_deaths', 'new_deaths', 'new_deaths_smoothed', 'total_cases_per_million', 'new_cases_per_million', 'new_cases_smoothed_per_million', 'total_deaths_per_million', 'new_deaths_per_million', 'new_deaths_smoothed_per_million', 'reproduction_rate', 'icu_patients', 'icu_patients_per_million', 'hosp_patients', 'hosp_patients_per_million', 'weekly_icu_admissions', 'weekly_icu_admissions_per_million', 'weekly_hosp_admissions', 'weekly_hosp_admissions_per_million', 'new_tests', 'total_tests', 'total_tests_per_thousand', 'new_tests_per_thousand', 'new_tests_smoothed', 'new_tests_smoothed_per_thousand', 'positive_rate', 'tests_per_case', 'tests_units', 'total_vaccinations', 'people_vaccinated', 'people_fully_vaccinated', 'total_boosters', 'new_vaccinations', 'new_vaccinations_smoothed', 'total_vaccinations_per_hundred', 'people_vaccinated_per_hundred', 'people_fully_vaccinated_per_hundred', 'total_boosters_per_hundred', 'new_vaccinations_smoothed_per_million', 'new_people_vaccinated_smoothed', 'new_people_vaccinated_smoothed_per_hundred', 'stringency_index', 'population', 'population_density', 'median_age', 'aged_65_older', 'aged_70_older', 'gdp_per_capita', 'extreme_poverty', 'cardiovasc_death_rate', 'diabetes_prevalence', 'female_smokers', 'male_smokers', 'handwashing_facilities', 'hospital_beds_per_thousand', 'life_expectancy', 'human_development_index', 'excess_mortality_cumulative_absolute', 'excess_mortality_cumulative', 'excess_mortality', 'excess_mortality_cumulative_per_million']

Preselected Columns to Reduce Complexity:

['total_cases_per_million', 'new_cases_smoothed_per_million', 'total_deaths_per_million', 'total_vaccinations_per_hundred', 'people_fully_vaccinated_per_hundred','icu_patients_per_million', ]

Goal:

Visuallize and compare the Covid-19 effects on the countries worldwide. The results should be presented as a python dashboard.

How To Use The Code:

  1. Clone the gitHub repository:
    >> git clone https://github.com/FabianHeu/DataScienceProject.git
  2. Run the python script main.py
    >> python main.py
  3. Check out the dash server on your browser http://127.0.0.1:8050/

Sources:

The App Design is based on:

https://dash.gallery/dash-uber-rides-demo/

##Jupyter Notebook:

To test single functions and play around with the code there is jupyter notbook called main.ipynb in the jupyter subfolder.
>> jupyter notebook main.ipynb

alt text

About

This project is part of the course Applied Data Science with Python

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages