Skip to content

IG71Y/torchopenl3

 
 

Repository files navigation

Torchopenl3

Please cite the following TorchOpenL3 in your work:
[1]Gyanendra Das, Humair Raj Khan, Joseph Turian (2021). torchopenl3 (version 1.0.1). DOI 10.5281/zenodo.5168808, https://github.com/torchopenl3/torchopenl3.

TorchopenL3 is a pytorch port of the OpenL3 Python library for computing deep audio embeddings.
PyPI Maintenance Ask Me Anything ! GitHub version License

Contributors

GitHub Contributors Image

Please refer to the Openl3 Library for keras version.

Comparison

We run torchopenl3 over 100 audio files and compare with openl3 embeddings. Below is the MAE (Mean Absolute Error) Table

Content_type Input_repr Emd_size MAE
Env Linear 512 1.1522600237867664e-06
Env Linear 6144 1.027089645617707e-06
Env Mel128 512 1.2094695046016568e-06
Env Mel128 6144 1.0968088741947213e-06
Env Mel256 512 1.1641358707947802e-06
Env Mel256 6144 1.0069775197507625e-06
Music Linear 512 1.173499645119591e-06
Music Linear 6144 1.048712784381678e-06
Music Mel128 512 1.1837427564387327e-06
Music Mel128 6144 1.0497348176841115e-06
Music Mel256 512 1.1619711483490392e-06
Music Mel256 6144 9.881532906774738e-07

Installation

PyPI
Install via pip

pip install torchopenl3

Install the package with all dev libraries (i.e. tensorflow openl3)

git clone https://github.com/turian/torchopenl3.git
pip3 install -e ".[dev]"

Install Docker and work within the Docker environment. Unfortunately this Docker image is quite big (about 4 GB) because

docker pull turian/torchopenl3
# Or, build the docker yourself
#docker build -t turian/torchopenl3 .

Using TorchpenL3

Open In Colab

To help you get started with TorchopenL3 please go through the colab file.

Acknowledge

Special Thank you to Joseph Turian for his help

[1] Look, Listen and Learn More: Design Choices for Deep Audio Embeddings
Jason Cramer, Ho-Hsiang Wu, Justin Salamon, and Juan Pablo Bello.
IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), pages 3852–3856, Brighton, UK, May 2019.

[2] Look, Listen and Learn
Relja Arandjelović and Andrew Zisserman
IEEE International Conference on Computer Vision (ICCV), Venice, Italy, Oct. 2017.

Model Weights License

The model weights are made available under License

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 98.7%
  • Dockerfile 1.3%