Skip to content

IcodeNet/chatbotollama

Repository files navigation

Flagstone AI Chat Assistant

An enterprise-grade AI chat assistant powered by Ollama and ChromaDB for context-aware responses about Flagstone's services.

Features

  • Real-time AI chat interface with streaming responses
  • Context-aware responses using RAG (Retrieval Augmented Generation)
  • Response caching system with toggle and clear options
  • FAQ quick access panel
  • Auto-scroll functionality
  • Request cancellation support
  • Enterprise-grade UI with modern design

Technical Stack

  • Frontend: React + Vite
  • UI: TailwindCSS + Framer Motion
  • Backend: Express.js
  • Vector Database: ChromaDB
  • LLM: Ollama

Setup

  1. Install dependencies:
npm install
  1. Start ChromaDB:
pip install chromadb
python -m chromadb.app --host 0.0.0.0 --port 8000
  1. Start the development server:
npm run dev:all

Architecture

Frontend Components

  • ChatBot: Main chat interface with message handling and UI controls
  • ExampleQuestions: FAQ panel with pre-defined questions
  • Message bubbles with Markdown support
  • Loading states and animations

Backend Services

  • Express server handling chat requests
  • ChromaDB integration for document retrieval
  • Ollama integration for AI responses
  • Caching system for repeated queries

API Endpoints

  • POST /api/chat: Send chat messages
  • POST /api/cache: Toggle response caching
  • POST /api/cache/clear: Clear cached responses
  • POST /api/docs: Update documentation in vector store

Environment Setup

Required services:

  1. Ollama running locally
  2. ChromaDB server
  3. Node.js backend
  4. React frontend

Development

Run all services:

npm run dev:all

This starts:

  • Frontend on port 5173
  • Backend on port 3001
  • ChromaDB on port 8000

Prerequisites

Setup

  1. Clone the repository:
git clone <repository-url>
cd flagstone-chatbot
  1. Create context directory and add documentation:
# Create the context directory
mkdir -p context

# Create the initial documentation file
touch context/flagstone.md

# Add your documentation content to context/flagstone.md
# You can either manually copy the content or use the /api/docs endpoint later
  1. Start ChromaDB:
# Install required packages
pip install chromadb uvicorn
pip install sentence-transformers
pip install chromadb-default-embed

# Start ChromaDB server with uvicorn
uvicorn chromadb.app:app --host 0.0.0.0 --port 8000 --log-level debug

Note: If you get embedding errors:

# Make sure you have all required dependencies
pip install --upgrade pip
pip install chromadb[all]
pip install sentence-transformers
pip install chromadb-default-embed

# If you still see errors, try:
pip install torch torchvision torchaudio

Troubleshooting:

  1. If port 8000 is in use:
netstat -ano | findstr :8000
# If port is in use, try a different port:
uvicorn chromadb.app:app --host 0.0.0.0 --port 8001 --log-level debug
  1. If you see no server output:
$env:PYTHONUNBUFFERED="1"
uvicorn chromadb.app:app --host 0.0.0.0 --port 8000 --log-level debug --reload
  1. Create the Flagstone Assistant model:
# First, make sure Ollama is running
ollama serve

# Create the model using our Modelfile
npm run update-model

# Verify the model was created
ollama list
  1. Start the application:
# Start the server (make sure ChromaDB is running first!)
npm run server

# In a new terminal, start the client
npm run client

# Or run both together
npm run dev:all

RAG System

The chatbot uses Retrieval-Augmented Generation (RAG) to provide more accurate and context-aware responses.

Performance Optimization

The system is optimized for fast response times through several mechanisms:

Model Configuration

# Modelfile optimizations
PARAMETER temperature 0.0
PARAMETER top_k 1
PARAMETER top_p 0.001
PARAMETER num_ctx 2048
PARAMETER num_thread 4
PARAMETER repeat_penalty 1.5

RAG Optimizations

  • Limited context retrieval (2 most relevant chunks)
  • Optimized vector search parameters
  • Concise prompt structure
  • Multi-threading enabled

Server Configuration

// Optimized options for Ollama requests
options: {
  temperature: 0.0,
  top_p: 0.001,
  top_k: 1,
  repeat_penalty: 1.5,
  cache: true,
  cache_size: 2048,
  num_ctx: 2048,
  num_thread: 4,
}

Response Caching

  • Built-in response caching through Ollama
  • Toggle caching via UI
  • Clear cache functionality
  • Cache size management

Performance Monitoring

The system includes comprehensive performance monitoring across all components:

Server-Side Timing

// Example server logs with timing information
[INFO] Starting request processing...
[INFO] Vector search completed in 127ms
[INFO] Context retrieval: 2 chunks in 89ms
[INFO] LLM generation started at 216ms
[INFO] Response received in 1842ms
[INFO] Total request time: 2058ms

Monitored Components

  1. Vector Search Performance

    • Document chunk retrieval time
    • Number of chunks retrieved
    • Search quality metrics
  2. LLM Response Generation

    • Model loading time
    • Token generation speed
    • Total generation time
  3. End-to-End Request Timing

    • API request latency
    • Processing overhead
    • Total response time

Performance Metrics

// Example metrics from a typical request
{
  vectorSearch: {
    duration: "127ms",
    chunksRetrieved: 2,
    searchQuality: 0.89
  },
  llmGeneration: {
    modelLoadTime: "45ms",
    tokenGeneration: "1797ms",
    tokensGenerated: 256
  },
  totalRequest: {
    apiLatency: "89ms",
    processing: "172ms",
    total: "2058ms"
  }
}

Monitoring Tools

  • Console logging with timing information
  • Performance tracking in browser DevTools
  • Server-side metrics collection

Optimization Targets

  • Vector search: < 150ms
  • Context retrieval: < 100ms
  • LLM generation: < 2000ms
  • Total request: < 2500ms

Performance Analysis

Monitor these metrics to identify:

  • Bottlenecks in the pipeline
  • Areas for optimization
  • Resource usage patterns
  • Cache effectiveness

System Requirements for Optimal Performance

  • 16GB RAM recommended
  • Multi-core CPU (4+ cores)
  • SSD storage
  • GPU acceleration (optional)

How it Works

  1. Document Processing:

    • Documentation is stored in context/flagstone.md
    • Documents are automatically chunked into smaller pieces
    • Chunks are stored in ChromaDB vector store
  2. Query Processing:

    • User questions are used to retrieve relevant document chunks
    • Retrieved context is provided to the LLM
    • LLM generates responses based on the specific context

Managing Documentation

Add or update documentation using the API:

curl -X POST http://localhost:3001/api/docs \
  -H "Content-Type: application/json" \
  -d '{
    "filename": "new-doc.md",
    "content": "# New Documentation\n\nThis is new content..."
  }'

Or manually:

  1. Add markdown files to the context directory
  2. Restart the server to reindex the documentation

Model Management

Model Configuration

The model uses:

  • Base: Mistral (good balance of performance and accuracy)
  • RAG system for real-time context from documentation
  • Optimized parameters for chat interactions

Project Structure

flagstone-chatbot/
├── Modelfile              # Ollama model definition
├── server.js             # Express server for chat API
├── test.py              # ChromaDB test script
├── src/
│   ├── components/       # React components
│   │   ├── ChatBot.jsx  # Main chat interface
│   │   └── ExampleQuestions.jsx  # FAQ panel
│   ├── App.jsx          # Root component
│   ├── main.jsx         # Entry point
│   └── index.css        # Global styles and themes
├── context/             # Documentation for RAG system
│   └── flagstone.md     # Flagstone documentation
├── package.json         # Project dependencies
├── tailwind.config.js   # Tailwind CSS configuration
└── .gitignore          # Git ignore rules

Environment Variables

Create a .env file if needed:

PORT=3001              # Server port
OLLAMA_HOST=localhost  # Ollama host
OLLAMA_PORT=11434     # Ollama port

Contributing

  1. Update documentation sources in create-model.ps1
  2. Test changes locally
  3. Rebuild the model
  4. Verify responses

Troubleshooting

Common issues:

  1. Model not found:
# Check if model exists
ollama list

# Rebuild if needed
ollama create flagstone-assistant -f Modelfile
  1. Server connection issues:
# Check if Ollama is running
curl http://localhost:11434/api/tags

# Start Ollama if needed
ollama serve
  1. Model responses not updated:
# Force rebuild the model
ollama create flagstone-assistant -f Modelfile

System Requirements

  1. Hardware Requirements:

    • 8GB RAM minimum (16GB recommended)
    • 4 CPU cores minimum
    • 20GB free disk space
    • CPU with virtualization support enabled in BIOS
  2. Software Requirements:

    • Windows 10/11
    • WSL2 enabled
    • Virtualization enabled in BIOS
    • Docker Desktop with WSL2 backend

Docker Desktop Setup

  1. Enable WSL2:

    # Install WSL2
    wsl --install
    
    # Enable virtualization features
    dism.exe /online /enable-feature /featurename:VirtualMachinePlatform /all /norestart
    dism.exe /online /enable-feature /featurename:Microsoft-Windows-Subsystem-Linux /all /norestart
    
    # Restart your computer
  2. Install Docker Desktop:

    • Download from docker.com
    • During installation:
      • Select "Use WSL2 instead of Hyper-V"
      • Enable "Install required Windows components for WSL2"
  3. Configure Docker Desktop:

    • Open Docker Desktop
    • Go to Settings > General
    • Ensure "Use WSL2 based engine" is checked
    • Go to Settings > Resources > WSL Integration
    • Enable integration with your WSL distro

Quick Start

  1. Install Ollama

    • Download and install Docker Desktop from docker.com
    • Enable WSL2 integration in Docker Desktop settings
    • Download and install Ollama from ollama.ai/download
  2. Clone and Setup

    # Clone the repository
    git clone <repository-url>
    cd ChatBotOllama
    
    # Install dependencies
    npm install
  3. Create the AI Model

    # Verify Ollama is running
    ollama list
    
    # Create the Flagstone assistant model
    ollama create flagstone-assistant -f Modelfile
    
    # Test the model
    ollama run flagstone-assistant "What services does Flagstone offer?"
  4. Start the Application

    # Terminal 1: Start the backend server
    npm run server
    
    # Terminal 2: Start the frontend
    npm run dev
  5. Access the Application

Troubleshooting

Common Issues

  1. Ollama Not Responding

    # Check if Ollama is running
    ollama list
    
    # If not responding, restart Docker Desktop
    # Then try creating the model again
    ollama create flagstone-assistant -f Modelfile
  2. Port Conflicts

    • Ensure ports 3000 and 3001 are available
    • Check if other services are using these ports
    • Modify port numbers in vite.config.js and server.js if needed
  3. Model Creation Errors

    # Remove existing model if there are issues
    ollama rm flagstone-assistant
    
    # Recreate the model
    ollama create flagstone-assistant -f Modelfile

Verification Steps

  1. Check Docker

    • Open Docker Desktop
    • Verify WSL2 integration is enabled
    • Check Docker is running
  2. Verify Ollama

    # Should show available models
    ollama list
    
    # Test direct model response
    ollama run flagstone-assistant "Hello, what services does Flagstone offer?"
  3. Test Backend

    # Start server and check for any errors
    npm run server
    
    # In a new terminal, test the API endpoint
    curl -X POST http://localhost:3001/api/chat `
      -H "Content-Type: application/json" `
      -d "{\"message\":\"Hello, what services does Flagstone offer?\"}"
  4. Test Frontend

    # Start development server
    npm run dev
    
    # Check browser console for any errors
    # Verify network requests in browser DevTools
  5. Debug Logs

    • Check server console for:
      Received message: [Your message]
      Ollama chunk: [Response chunks]
      Final response: [Complete response]
      Sending response: [Cleaned response]
      
    • Check browser console for:
      Sending message: [Your message]
      Received response data: {response: "..."}
      
  6. Common Issues

    • If server shows response but client doesn't:
      • Check browser network tab
      • Verify response format
      • Check for CORS errors
    • If Ollama responds but server doesn't:
      • Check server logs
      • Verify process.spawn execution
      • Check error handling

Project Structure

ChatBotOllama/
├── src/
│   ├── components/
│   │   └── ChatBot.jsx    # Main chat component
│   ├── App.jsx            # Root component
│   ├── main.jsx          # Entry point
│   └── index.css         # Global styles
├── server.js             # Backend server
├── Modelfile             # Ollama model definition
├── index.html            # HTML entry point
├── vite.config.js        # Vite configuration
├── postcss.config.cjs    # PostCSS configuration
├── tailwind.config.cjs   # Tailwind configuration
└── package.json          # Project dependencies

Available Scripts

  • npm run dev - Start frontend development server
  • npm run server - Start backend server
  • npm run build - Build for production
  • npm run preview - Preview production build
  • npm run dev:all - Start both frontend and backend

Development Notes

  • Frontend runs on port 3000
  • Backend runs on port 3001
  • Ollama API runs on port 11434
  • Uses Tailwind CSS for styling
  • Framer Motion for animations
  • Vite for development server

Support

If you encounter any issues:

  1. Check the troubleshooting section
  2. Verify all prerequisites are installed
  3. Ensure Docker Desktop is running
  4. Check console logs for errors

Overview

This chatbot is specifically designed to help users understand:

  • Flagstone's cash deposit platform features
  • Account types and requirements
  • FSCS protection details
  • Security measures
  • Savings strategies
  • Account opening process

Common Commands

# List available models
ollama list

# Test the model
ollama run flagstone-assistant "What are Flagstone's main features?"

# Remove and recreate model (if needed)
ollama rm flagstone-assistant
ollama create flagstone-assistant -f Modelfile

Development

The application runs on:

Project Structure

ChatBotOllama/
├── src/
│   ├── components/
│   │   ├── ChatBot.jsx
│   │   └── ChatBot.css
│   ├── App.jsx
│   └── index.js
├── server.js
├── Modelfile
└── package.json

Features

Chat Interface

  • Real-time responses
  • Loading states
  • Error handling
  • Responsive design
  • Markdown support for formatted responses

AI Capabilities

  • Comprehensive knowledge of Flagstone's platform
  • Understanding of:
    • Account types and features
    • FSCS protection details
    • Security measures
    • Account requirements
    • Savings strategies
    • Platform benefits

Configuration

Server Configuration

  • The server runs on port 3001 by default
  • CORS is enabled for local development
  • Error handling for AI model responses

Model Configuration

The AI model is configured with:

  • Temperature: 0.7 (balanced creativity and accuracy)
  • Top-k: 50
  • Top-p: 0.95
  • Custom response templates
  • Specific domain knowledge about Flagstone

Customization

Styling

  • Modify src/components/ChatBot.css to change the appearance
  • The chat interface uses CSS classes for easy styling:
    • .chatbot-container: Main container
    • .chat-messages: Messages container
    • .message.user: User message styling
    • .message.assistant: AI response styling

AI Model

  • The model is defined in Modelfile
  • Includes comprehensive Flagstone-specific information
  • Can be updated with new content as needed

Windows-Specific Notes

File Paths

  • Use Windows-style paths in PowerShell (\ instead of /)
  • Use forward slashes (/) in code and configuration files
  • Be mindful of line endings (CRLF vs LF)

Port Access

  • Check Windows Defender Firewall settings
  • Ensure ports 3000 (React) and 3001 (Server) are accessible
  • Verify Ollama port 11434 is not blocked

Performance

  • Ensure adequate system resources for WSL2
  • Configure Docker Desktop resource limits appropriately
  • Close unnecessary applications when running the model

Contributing

  1. Fork the repository
  2. Create your feature branch (git checkout -b feature/AmazingFeature)
  3. Commit your changes (git commit -m 'Add some AmazingFeature')
  4. Push to the branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

License

This project is licensed under the MIT License - see the LICENSE file for details

Acknowledgments

  • Built with Ollama
  • Based on Mistral AI model
  • Content from Flagstone
  • Designed and Architected by Byron Thanopoulos (TOGAF Architect)

Ollama Commands and Expected Outputs

1. Check Available Models

ollama list

Expected output:

NAME                 ID          SIZE   MODIFIED
flagstone-assistant  mistral     4.1GB  2024-03-10 14:30:20
mistral             mistral     4.1GB  2024-03-10 14:25:15

2. Create Model

ollama create flagstone-assistant -f Modelfile

Expected output:

Downloading mistral model...
Downloaded mistral model
Creating flagstone-assistant from Modelfile... done
Model 'flagstone-assistant' created successfully

3. Test Model

ollama run flagstone-assistant "What services does Flagstone offer?"

Expected output:

Flagstone offers a leading cash deposit platform with the following key services:

1. Access to 60+ banking partners through a single application
2. Account management for instant access, notice, and fixed-term accounts
3. FSCS protection up to £85,000 per bank (£170,000 for joint accounts)
4. Holding account functionality through HSBC
5. Portfolio management and optimization tools

4. Remove Model

ollama rm flagstone-assistant

Expected output:

Removed model 'flagstone-assistant'

5. Check Ollama Version

ollama --version

Expected output:

ollama version 0.1.27

Common Error Messages and Solutions

  1. Docker Not Running
Error: Cannot connect to the Docker daemon... Is the docker daemon running?

Solution: Start Docker Desktop and wait for it to fully initialize

  1. Port Already in Use
Error: listen tcp 127.0.0.1:11434: bind: Only one usage of each socket address

Solution: Ollama is already running. Continue with your commands.

  1. Model Not Found
Error: model 'flagstone-assistant' not found

Solution: Create the model using the Modelfile first

  1. Invalid Modelfile
Error: command must be one of "from", "license", "template", "system"...

Troubleshooting RAG

  1. ChromaDB Connection Issues:
# Check if ChromaDB is running
curl http://localhost:8000/api/v1/heartbeat

# Verify Docker container
docker ps | grep chroma
  1. Document Processing Issues:
# Check context directory
ls -l context/

# Verify file permissions
chmod 644 context/*.md
  1. Vector Store Issues:
# Remove existing collection
curl -X DELETE http://localhost:8000/api/v1/collections/flagstone_docs

# Restart server to recreate collection
npm run server

System Initialization (Windows 11)

After initial setup, follow this startup sequence:

  1. Restart your machine to ensure clean state

  2. After restart, start services in this order:

# 1. Start Docker Desktop
# Wait for Docker Desktop to fully initialize (green icon in system tray)

# 2. Start ChromaDB container
docker start chroma
# Or if first time:
docker run -d --name chroma -p 8000:8000 chromadb/chroma

# 3. Start Ollama
ollama serve

# 4. Verify services are running
docker ps  # Should show chroma container
curl http://localhost:8000/api/v1/heartbeat  # Should return OK
curl http://localhost:11434/api/tags  # Should show Ollama models

# 5. Start the application
npm run server  # In one terminal
npm run client  # In another terminal

Common Startup Issues:

  1. If Docker container won't start:
# Remove existing container and recreate
docker rm chroma
docker run -d --name chroma -p 8000:8000 chromadb/chroma
  1. If services won't connect after sleep/hibernate:
# Restart Docker Desktop
# Then restart ChromaDB container
docker restart chroma
  1. If WSL issues occur:
# Open PowerShell as Administrator
wsl --shutdown
wsl --update
# Restart Docker Desktop

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published