Skip to content

Commit

Permalink
[v1.1.1 🔒] v1.1.1
Browse files Browse the repository at this point in the history
  • Loading branch information
saratheriver committed Apr 12, 2021
1 parent 95443ed commit aa2398f
Show file tree
Hide file tree
Showing 8 changed files with 34 additions and 34 deletions.
Binary file modified docs/build/doctrees/environment.pickle
Binary file not shown.
Binary file modified docs/build/html/objects.inv
Binary file not shown.
2 changes: 1 addition & 1 deletion docs/build/html/searchindex.js

Large diffs are not rendered by default.

8 changes: 4 additions & 4 deletions docs/pages/01.install/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@
Installation
==============================

**ENIGMA TOOLBOX** is available in Python and MATLAB!
**ENIGMA TOOLBOX** is available in Python and Matlab!

.. tabs::

Expand All @@ -33,14 +33,14 @@ Installation

.. tab:: Matlab

**ENIGMA TOOLBOX** was tested with MATLAB R2017b.
**ENIGMA TOOLBOX** was tested with Matlab R2017b.

To install the MATLAB toolbox simply `download <https://github.com/MICA-MNI/ENIGMA/archive/1.1.0.zip>`_
To install the Matlab toolbox simply `download <https://github.com/MICA-MNI/ENIGMA/archive/1.1.1.zip>`_
and unzip the GitHub toolbox (slow 🐢) or run the following command in your terminal (fast 🐅): ::
git clone https://github.com/MICA-MNI/ENIGMA.git
Once you have the toolbox on your computer, simply run the following command in MATLAB: ::
Once you have the toolbox on your computer, simply run the following command in Matlab: ::

addpath(genpath('/path/to/ENIGMA/matlab/'))
2 changes: 1 addition & 1 deletion docs/pages/02.whatsnew/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@
What's new?
======================================

v1.1.1 (April 9, 2021)
v1.1.1 (April 12, 2021)
------------------------------------------
New import/export features for CIfTI files. Improved documentation.

Expand Down
54 changes: 27 additions & 27 deletions docs/pages/16.import/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -11,14 +11,14 @@ Compatible import file formats are: :ref:`.txt/.csv <i_txt_csv>`, :ref:`FreeSurf

As an example, we will import vertexwise cortical thickness data sampled on the Conte69 surface template (available within the **ENIGMA Toolbox**).
The examples below can be easily modified to import any vertexwise or parcellated data by simply changing the path to the data and the filenames.
Here, we imported data from the ENIGMA's import_export datasets directory.
Here, we imported data from ENIGMA's import_export directory.

.. _i_txt_csv:

.txt / .csv
---------------------------------------------------

If your data are stored as text (.txt) or comma-separated values files, then you may use the ``dlmread()`` (*Matlab*) or ``np.loadtxt()`` (*Python*)
If your data are stored as text (.txt) or comma-separated values (.csv) files, then you may use the ``dlmread()`` (*Matlab*) or ``np.loadtxt()`` (*Python*)
functions to load your data.

.. admonition:: Table please 🍴
Expand All @@ -35,21 +35,21 @@ functions to load your data.
>>> import os

>>> # Define path to your data
>>> data_path = os.path.join(os.path.dirname(enigmatoolbox.__file__) + "/datasets/import_export/")
>>> dpath = os.path.join(os.path.dirname(enigmatoolbox.__file__) + "/datasets/import_export/")

>>> # Import data stored as .txt / .csv
>>> CT = []
>>> for _, h in enumerate(['lh', 'rh']):
>>> CT = np.append(CT, np.loadtxt(data_path + '{}.conte69_32k_thickness.txt'.format(h)))
>>> CT = np.append(CT, np.loadtxt(dpath + '{}.conte69_32k_thickness.txt'.format(h)))

.. code-tab:: matlab

% Define path to your data
data_path = what('import_export'); data_path = data_path.path;
dpath = what('import_export'); dpath = data_path.path;

% Import data stored as .txt / .csv
data_lh = dlmread([data_path '/lh.conte69_32k_thickness.txt']);
data_rh = dlmread([data_path '/rh.conte69_32k_thickness.txt']);
data_lh = dlmread([dpath '/lh.conte69_32k_thickness.txt']);
data_rh = dlmread([dpath '/rh.conte69_32k_thickness.txt']);
CT = [data_lh data_rh];


Expand All @@ -74,21 +74,21 @@ functions to load your data. You can get the Matlab function from `here <https:/
>>> import os

>>> # Define path to your data
>>> data_path = os.path.join(os.path.dirname(enigmatoolbox.__file__) + "/datasets/import_export/")
>>> dpath = os.path.join(os.path.dirname(enigmatoolbox.__file__) + "/datasets/import_export/")

>>> # Import data stored as FreeSurfer "curv"
>>> CT = []
>>> for _, h in enumerate(['lh', 'rh']):
>>> CT = np.append(CT, nib.freesurfer.io.read_morph_data(data_path + '{}.conte69_32k_thickness'.format(h)))
>>> CT = np.append(CT, nib.freesurfer.io.read_morph_data(dpath + '{}.conte69_32k_thickness'.format(h)))

.. code-tab:: matlab

% Define path to your data
data_path = what('import_export'); data_path = data_path.path;
dpath = what('import_export'); dpath = dpath.path;

% Import data stored as FreeSurfer "curv"
data_lh = read_curv([data_path '/lh.conte69_32k_thickness']);
data_rh = read_curv([data_path '/rh.conte69_32k_thickness']);
data_lh = read_curv([dpath '/lh.conte69_32k_thickness']);
data_rh = read_curv([dpath '/rh.conte69_32k_thickness']);
CT = [data_lh; data_rh].';


Expand All @@ -113,21 +113,21 @@ functions to load your data. You can get the Matlab function from `here <https:/
>>> import os

>>> # Define path to your data
>>> data_path = os.path.join(os.path.dirname(enigmatoolbox.__file__) + "/datasets/import_export/")
>>> dpath = os.path.join(os.path.dirname(enigmatoolbox.__file__) + "/datasets/import_export/")

>>> # Import data stored as .mgh / .mgz
>>> CT = []
>>> for _, h in enumerate(['lh', 'rh']):
>>> CT = np.append(CT, nib.load(data_path + '{}.conte69_32k_thickness.mgh'.format(h)).get_fdata().squeeze())
>>> CT = np.append(CT, nib.load(dpath + '{}.conte69_32k_thickness.mgh'.format(h)).get_fdata().squeeze())

.. code-tab:: matlab

% Define path to your data
data_path = what('import_export'); data_path = data_path.path;
dpath = what('import_export'); dpath = dpath.path;

% Import data stored as .mgh / .mgz
data_lh = load_mgh([data_path '/lh.conte69_32k_thickness.mgh']);
data_rh = load_mgh([data_path '/rh.conte69_32k_thickness.mgh']);
data_lh = load_mgh([dpath '/lh.conte69_32k_thickness.mgh']);
data_rh = load_mgh([dpath '/rh.conte69_32k_thickness.mgh']);
CT = [data_lh; data_rh].';


Expand All @@ -152,21 +152,21 @@ functions to load your data. You can get the Matlab function from `here <https:/
>>> import os

>>> # Define path to your data
>>> data_path = os.path.join(os.path.dirname(enigmatoolbox.__file__) + "/datasets/import_export/")
>>> dpath = os.path.join(os.path.dirname(enigmatoolbox.__file__) + "/datasets/import_export/")

>>> # Import data stored as GIfTI / .gii
>>> CT = []
>>> for _, h in enumerate(['lh', 'rh']):
>>> CT = np.append(CT, nib.load(data_path + '{}.conte69_32k_thickness.gii'.format(h)).darrays[0].data)
>>> CT = np.append(CT, nib.load(dpath + '{}.conte69_32k_thickness.gii'.format(h)).darrays[0].data)

.. code-tab:: matlab

% Define path to your data
data_path = what('import_export'); data_path = data_path.path;
dpath = what('import_export'); dpath = dpath.path;

% Import data stored as GIfTI / .gii
data_lh = gifti([data_path '/lh.conte69_32k_thickness.gii']);
data_rh = gifti([data_path '/rh.conte69_32k_thickness.gii']);
data_lh = gifti([dpath '/lh.conte69_32k_thickness.gii']);
data_rh = gifti([dpath '/rh.conte69_32k_thickness.gii']);
CT = [data_lh.cdata; data_rh.cdata].';


Expand All @@ -191,21 +191,21 @@ functions to load your data. You can get the Matlab function from `here <https:/
>>> import os

>>> # Define path to your data
>>> data_path = os.path.join(os.path.dirname(enigmatoolbox.__file__) + "/datasets/import_export/")
>>> dpath = os.path.join(os.path.dirname(enigmatoolbox.__file__) + "/datasets/import_export/")

>>> # Import data stored as CIfTI / .dscalar.nii / .dtseries.nii
>>> CT = []
>>> for _, h in enumerate(['lh', 'rh']):
>>> CT = np.append(CT, np.asarray(nib.load(data_path + '{}.conte69_32k_thickness.dscalar.nii'.format(h)).get_data()))
>>> CT = np.append(CT, np.asarray(nib.load(dpath + '{}.conte69_32k_thickness.dscalar.nii'.format(h)).get_data()))

.. code-tab:: matlab

% Define path to your data
data_path = what('import_export'); data_path = data_path.path;
dpath = what('import_export'); dpath = dpath.path;

% Import data stored as CIfTI / .dscalar.nii / .dtseries.nii
data_lh = cifti_read([data_path '/lh.conte69_32k_thickness.dscalar.nii']);
data_rh = cifti_read([data_path '/rh.conte69_32k_thickness.dscalar.nii']);
data_lh = cifti_read([dpath '/lh.conte69_32k_thickness.dscalar.nii']);
data_rh = cifti_read([dpath '/rh.conte69_32k_thickness.dscalar.nii']);
CT = [data_lh.cdata; data_rh.cdata].';


Binary file modified enigmatoolbox/__pycache__/_version.cpython-37.pyc
Binary file not shown.
2 changes: 1 addition & 1 deletion enigmatoolbox/_version.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,3 @@
"""enigmatoolbox version"""

__version__ = '1.1.0'
__version__ = '1.1.1'

0 comments on commit aa2398f

Please sign in to comment.