Sunburst | Grid | Icicle |
---|---|---|
You should only include a header src/binary_quadratic_model.hpp
in your project.
#include "src/binary_quadratic_model.hpp"
using namespace cimod;
int main()
{
// Set linear biases and quadratic biases
Linear<uint32_t, double> linear{ {1, 1.0}, {2, 2.0}, {3, 3.0}, {4, 4.0} };
Quadratic<uint32_t, double> quadratic
{
{std::make_pair(1, 2), 12.0}, {std::make_pair(1, 3), 13.0}, {std::make_pair(1, 4), 14.0},
{std::make_pair(2, 3), 23.0}, {std::make_pair(2, 4), 24.0},
{std::make_pair(3, 4), 34.0}
};
// Set offset
double offset = 0.0;
// Set variable type
Vartype vartype = Vartype::BINARY;
// Create a BinaryQuadraticModel instance
BinaryQuadraticModel<uint32_t, double, cimod::Dense> bqm(linear, quadratic, offset, vartype);
//linear terms -> bqm.get_linear()
//quadratic terms -> bqm.get_quadratic()
return 0;
}
import cimod
import dimod
# Set linear biases and quadratic biases
linear = {1:1.0, 2:2.0, 3:3.0, 4:4.0}
quadratic = {(1,2):12.0, (1,3):13.0, (1,4):14.0, (2,3):23.0, (2,4):24.0, (3,4):34.0}
# Set offset
offset = 0.0
# Set variable type
vartype = dimod.BINARY
# Create a BinaryQuadraticModel instance
bqm = cimod.BinaryQuadraticModel(linear, quadratic, offset, vartype)
print(bqm.linear)
print(bqm.quadratic)
Use pre-commit
for auto chech before git commit.
.pre-commit-config.yaml
# pipx install pre-commit
# or
# pip install pre-commit
pre-commit install
$ python -m pip install -vvv .
# Binary
$ pip install jij-cimod
# From Source
$ pip install --no-binary=jij-cimod jij-cimod
$ python -m venv .venv
$ pip install pip-tools
$ pip-compile setup.cfg
$ pip-compile dev-requirements.in
$ pip-sync requirements.txt dev-requirements.txt
$ source .venv/bin/activate
$ export CMAKE_BUILD_TYPE=Debug
$ python setup.py --force-cmake install --build-type Debug -G Ninja
$ python setup.py --build-type Debug test
$ python -m coverage html
$ mkdir build
$ cmake -DCMAKE_BUILD_TYPE=Debug -S . -B build
$ cmake --build build --parallel
$ cd build
$ ./tests/cimod_test
# Alternatively Use CTest
$ ctest --extra-verbose --parallel --schedule-random
Needs: CMake > 3.22, C++17
- Format
$ pip-compile format-requirements.in
$ pip-sync format-requirements.txt
$ python -m isort
$ python -m black
- Aggressive Format
$ python -m isort --force-single-line-imports --verbose ./cimod
$ python -m autoflake --in-place --recursive --remove-all-unused-imports --ignore-init-module-imports --remove-unused-variables ./cimod
$ python -m autopep8 --in-place --aggressive --aggressive --recursive ./cimod
$ python -m isort ./cimod
$ python -m black ./cimod
- Lint
$ pip-compile setup.cfg
$ pip-compile dev-requirements.in
$ pip-compile lint-requirements.in
$ pip-sync requirements.txt dev-requirements.txt lint-requirements.txt
$ python -m flake8
$ python -m mypy
$ python -m pyright
import dimod
import cimod
import time
fil = open("benchmark", "w")
fil.write("N t_dimod t_cimod\n")
def benchmark(N, test_fw):
linear = {}
quadratic = {}
spin = {}
# interactions
for i in range(N):
spin[i] = 1
for elem in range(N):
linear[elem] = 2.0*elem;
for i in range(N):
for j in range(i+1, N):
if i != j:
quadratic[(i,j)] = (i+j)/(N)
t1 = time.time()
# initialize
a = test_fw.BinaryQuadraticModel(linear, quadratic, 0, test_fw.BINARY)
a.change_vartype(test_fw.SPIN)
# calculate energy for 50 times.
for _ in range(50):
print(a.energy(spin))
t2 = time.time()
return t2-t1
d_arr = []
c_arr = []
for N in [25, 50, 100, 200, 300, 400, 600, 800,1000, 1600, 2000, 3200, 5000]:
print("N {}".format(N))
d = benchmark(N, dimod)
c = benchmark(N, cimod)
print("{} {} {}".format(N, d, c))
fil.write("{} {} {}\n".format(N, d, c))
Package | Version |
---|---|
cimod | 1.0.3 |
dimod | 0.9.2 |
- As explained in #48, specifying self-loop index (e.g.
{(2, 2): 5}
) in thequadratic
argument inBinaryQuadraticModel
is not allowed.
Copyright 2022 Jij Inc.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.