Skip to content

Commit

Permalink
Enable Pytorch 2.6 (#8309)
Browse files Browse the repository at this point in the history
Partially addresses #8303.

### Description

This changes the maximum Numpy version to be below 3.0 for testing with
2.x compatibility. This appears to be resolved with newer versions of
dependencies. This will also include fixes for Pytorch 2.6 mostly
relating to `torch.load` and `autocast` usage.

### Types of changes
<!--- Put an `x` in all the boxes that apply, and remove the not
applicable items -->
- [x] Non-breaking change (fix or new feature that would not break
existing functionality).
- [ ] Breaking change (fix or new feature that would cause existing
functionality to change).
- [ ] New tests added to cover the changes.
- [ ] Integration tests passed locally by running `./runtests.sh -f -u
--net --coverage`.
- [ ] Quick tests passed locally by running `./runtests.sh --quick
--unittests --disttests`.
- [ ] In-line docstrings updated.
- [ ] Documentation updated, tested `make html` command in the `docs/`
folder.

---------

Signed-off-by: Eric Kerfoot <[email protected]>
Signed-off-by: Eric Kerfoot <[email protected]>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
  • Loading branch information
ericspod and pre-commit-ci[bot] authored Mar 8, 2025
1 parent 1983f27 commit 7c26e5a
Show file tree
Hide file tree
Showing 49 changed files with 184 additions and 178 deletions.
2 changes: 1 addition & 1 deletion monai/apps/deepedit/interaction.py
Original file line number Diff line number Diff line change
Expand Up @@ -72,7 +72,7 @@ def __call__(self, engine: SupervisedTrainer | SupervisedEvaluator, batchdata: d

with torch.no_grad():
if engine.amp:
with torch.cuda.amp.autocast():
with torch.autocast("cuda"):
predictions = engine.inferer(inputs, engine.network)
else:
predictions = engine.inferer(inputs, engine.network)
Expand Down
2 changes: 1 addition & 1 deletion monai/apps/deepgrow/interaction.py
Original file line number Diff line number Diff line change
Expand Up @@ -67,7 +67,7 @@ def __call__(self, engine: SupervisedTrainer | SupervisedEvaluator, batchdata: d
engine.network.eval()
with torch.no_grad():
if engine.amp:
with torch.cuda.amp.autocast():
with torch.autocast("cuda"):
predictions = engine.inferer(inputs, engine.network)
else:
predictions = engine.inferer(inputs, engine.network)
Expand Down
2 changes: 1 addition & 1 deletion monai/apps/detection/networks/retinanet_detector.py
Original file line number Diff line number Diff line change
Expand Up @@ -180,7 +180,7 @@ def forward(self, images: torch.Tensor):
nesterov=True,
)
torch.save(detector.network.state_dict(), 'model.pt') # save model
detector.network.load_state_dict(torch.load('model.pt')) # load model
detector.network.load_state_dict(torch.load('model.pt', weights_only=True)) # load model
"""

def __init__(
Expand Down
10 changes: 5 additions & 5 deletions monai/apps/detection/networks/retinanet_network.py
Original file line number Diff line number Diff line change
Expand Up @@ -88,8 +88,8 @@ def __init__(

for layer in self.conv.children():
if isinstance(layer, conv_type): # type: ignore
torch.nn.init.normal_(layer.weight, std=0.01)
torch.nn.init.constant_(layer.bias, 0)
torch.nn.init.normal_(layer.weight, std=0.01) # type: ignore[arg-type]
torch.nn.init.constant_(layer.bias, 0) # type: ignore[arg-type]

self.cls_logits = conv_type(in_channels, num_anchors * num_classes, kernel_size=3, stride=1, padding=1)
torch.nn.init.normal_(self.cls_logits.weight, std=0.01)
Expand Down Expand Up @@ -167,8 +167,8 @@ def __init__(self, in_channels: int, num_anchors: int, spatial_dims: int):

for layer in self.conv.children():
if isinstance(layer, conv_type): # type: ignore
torch.nn.init.normal_(layer.weight, std=0.01)
torch.nn.init.zeros_(layer.bias)
torch.nn.init.normal_(layer.weight, std=0.01) # type: ignore[arg-type]
torch.nn.init.zeros_(layer.bias) # type: ignore[arg-type]

def forward(self, x: list[Tensor]) -> list[Tensor]:
"""
Expand Down Expand Up @@ -297,7 +297,7 @@ def __init__(
)
self.feature_extractor = feature_extractor

self.feature_map_channels: int = self.feature_extractor.out_channels
self.feature_map_channels: int = self.feature_extractor.out_channels # type: ignore[assignment]
self.num_anchors = num_anchors
self.classification_head = RetinaNetClassificationHead(
self.feature_map_channels, self.num_anchors, self.num_classes, spatial_dims=self.spatial_dims
Expand Down
4 changes: 2 additions & 2 deletions monai/apps/detection/utils/box_coder.py
Original file line number Diff line number Diff line change
Expand Up @@ -221,15 +221,15 @@ def decode_single(self, rel_codes: Tensor, reference_boxes: Tensor) -> Tensor:

pred_ctr_xyx_axis = dxyz_axis * whd_axis[:, None] + ctr_xyz_axis[:, None]
pred_whd_axis = torch.exp(dwhd_axis) * whd_axis[:, None]
pred_whd_axis = pred_whd_axis.to(dxyz_axis.dtype)
pred_whd_axis = pred_whd_axis.to(dxyz_axis.dtype) # type: ignore[union-attr]

# When convert float32 to float16, Inf or Nan may occur
if torch.isnan(pred_whd_axis).any() or torch.isinf(pred_whd_axis).any():
raise ValueError("pred_whd_axis is NaN or Inf.")

# Distance from center to box's corner.
c_to_c_whd_axis = (
torch.tensor(0.5, dtype=pred_ctr_xyx_axis.dtype, device=pred_whd_axis.device) * pred_whd_axis
torch.tensor(0.5, dtype=pred_ctr_xyx_axis.dtype, device=pred_whd_axis.device) * pred_whd_axis # type: ignore[arg-type]
)

pred_boxes.append(pred_ctr_xyx_axis - c_to_c_whd_axis)
Expand Down
2 changes: 1 addition & 1 deletion monai/apps/mmars/mmars.py
Original file line number Diff line number Diff line change
Expand Up @@ -241,7 +241,7 @@ def load_from_mmar(
return torch.jit.load(_model_file, map_location=map_location)

# loading with `torch.load`
model_dict = torch.load(_model_file, map_location=map_location)
model_dict = torch.load(_model_file, map_location=map_location, weights_only=True)
if weights_only:
return model_dict.get(model_key, model_dict) # model_dict[model_key] or model_dict directly

Expand Down
2 changes: 1 addition & 1 deletion monai/apps/reconstruction/networks/blocks/varnetblock.py
Original file line number Diff line number Diff line change
Expand Up @@ -55,7 +55,7 @@ def soft_dc(self, x: Tensor, ref_kspace: Tensor, mask: Tensor) -> Tensor:
Returns:
Output of DC block with the same shape as x
"""
return torch.where(mask, x - ref_kspace, self.zeros) * self.dc_weight
return torch.where(mask, x - ref_kspace, self.zeros) * self.dc_weight # type: ignore

def forward(self, current_kspace: Tensor, ref_kspace: Tensor, mask: Tensor, sens_maps: Tensor) -> Tensor:
"""
Expand Down
7 changes: 3 additions & 4 deletions monai/bundle/scripts.py
Original file line number Diff line number Diff line change
Expand Up @@ -760,7 +760,7 @@ def load(
if load_ts_module is True:
return load_net_with_metadata(full_path, map_location=torch.device(device), more_extra_files=config_files)
# loading with `torch.load`
model_dict = torch.load(full_path, map_location=torch.device(device))
model_dict = torch.load(full_path, map_location=torch.device(device), weights_only=True)

if not isinstance(model_dict, Mapping):
warnings.warn(f"the state dictionary from {full_path} should be a dictionary but got {type(model_dict)}.")
Expand Down Expand Up @@ -1279,9 +1279,8 @@ def verify_net_in_out(
if input_dtype == torch.float16:
# fp16 can only be executed in gpu mode
net.to("cuda")
from torch.cuda.amp import autocast

with autocast():
with torch.autocast("cuda"):
output = net(test_data.cuda(), **extra_forward_args_)
net.to(device_)
else:
Expand Down Expand Up @@ -1330,7 +1329,7 @@ def _export(
# here we use ignite Checkpoint to support nested weights and be compatible with MONAI CheckpointSaver
Checkpoint.load_objects(to_load={key_in_ckpt: net}, checkpoint=ckpt_file)
else:
ckpt = torch.load(ckpt_file)
ckpt = torch.load(ckpt_file, weights_only=True)
copy_model_state(dst=net, src=ckpt if key_in_ckpt == "" else ckpt[key_in_ckpt])

# Use the given converter to convert a model and save with metadata, config content
Expand Down
11 changes: 2 additions & 9 deletions monai/data/dataset.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,6 @@
import warnings
from collections.abc import Callable, Sequence
from copy import copy, deepcopy
from inspect import signature
from multiprocessing.managers import ListProxy
from multiprocessing.pool import ThreadPool
from pathlib import Path
Expand Down Expand Up @@ -372,10 +371,7 @@ def _cachecheck(self, item_transformed):

if hashfile is not None and hashfile.is_file(): # cache hit
try:
if "weights_only" in signature(torch.load).parameters:
return torch.load(hashfile, weights_only=False)
else:
return torch.load(hashfile)
return torch.load(hashfile, weights_only=False)
except PermissionError as e:
if sys.platform != "win32":
raise e
Expand Down Expand Up @@ -1674,7 +1670,4 @@ def _load_meta_cache(self, meta_hash_file_name):
if meta_hash_file_name in self._meta_cache:
return self._meta_cache[meta_hash_file_name]
else:
if "weights_only" in signature(torch.load).parameters:
return torch.load(self.cache_dir / meta_hash_file_name, weights_only=False)
else:
return torch.load(self.cache_dir / meta_hash_file_name)
return torch.load(self.cache_dir / meta_hash_file_name, weights_only=False)
2 changes: 1 addition & 1 deletion monai/data/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -753,7 +753,7 @@ def affine_to_spacing(affine: NdarrayTensor, r: int = 3, dtype=float, suppress_z
if isinstance(_affine, torch.Tensor):
spacing = torch.sqrt(torch.sum(_affine * _affine, dim=0))
else:
spacing = np.sqrt(np.sum(_affine * _affine, axis=0))
spacing = np.sqrt(np.sum(_affine * _affine, axis=0)) # type: ignore[operator]
if suppress_zeros:
spacing[spacing == 0] = 1.0
spacing_, *_ = convert_to_dst_type(spacing, dst=affine, dtype=dtype)
Expand Down
2 changes: 1 addition & 1 deletion monai/data/video_dataset.py
Original file line number Diff line number Diff line change
Expand Up @@ -177,7 +177,7 @@ def get_available_codecs() -> dict[str, str]:
for codec, ext in all_codecs.items():
writer = cv2.VideoWriter()
fname = os.path.join(tmp_dir, f"test{ext}")
fourcc = cv2.VideoWriter_fourcc(*codec)
fourcc = cv2.VideoWriter_fourcc(*codec) # type: ignore[attr-defined]
noviderr = writer.open(fname, fourcc, 1, (10, 10))
if noviderr:
codecs[codec] = ext
Expand Down
16 changes: 8 additions & 8 deletions monai/engines/evaluator.py
Original file line number Diff line number Diff line change
Expand Up @@ -82,8 +82,8 @@ class Evaluator(Workflow):
default to `True`.
to_kwargs: dict of other args for `prepare_batch` API when converting the input data, except for
`device`, `non_blocking`.
amp_kwargs: dict of the args for `torch.cuda.amp.autocast()` API, for more details:
https://pytorch.org/docs/stable/amp.html#torch.cuda.amp.autocast.
amp_kwargs: dict of the args for `torch.autocast("cuda")` API, for more details:
https://pytorch.org/docs/stable/amp.html#torch.autocast.
"""

Expand Down Expand Up @@ -214,8 +214,8 @@ class SupervisedEvaluator(Evaluator):
default to `True`.
to_kwargs: dict of other args for `prepare_batch` API when converting the input data, except for
`device`, `non_blocking`.
amp_kwargs: dict of the args for `torch.cuda.amp.autocast()` API, for more details:
https://pytorch.org/docs/stable/amp.html#torch.cuda.amp.autocast.
amp_kwargs: dict of the args for `torch.autocast("cuda")` API, for more details:
https://pytorch.org/docs/stable/amp.html#torch.autocast.
compile: whether to use `torch.compile`, default is False. If True, MetaTensor inputs will be converted to
`torch.Tensor` before forward pass, then converted back afterward with copied meta information.
compile_kwargs: dict of the args for `torch.compile()` API, for more details:
Expand Down Expand Up @@ -324,7 +324,7 @@ def _iteration(self, engine: SupervisedEvaluator, batchdata: dict[str, torch.Ten
# execute forward computation
with engine.mode(engine.network):
if engine.amp:
with torch.cuda.amp.autocast(**engine.amp_kwargs):
with torch.autocast("cuda", **engine.amp_kwargs):
engine.state.output[Keys.PRED] = engine.inferer(inputs, engine.network, *args, **kwargs)
else:
engine.state.output[Keys.PRED] = engine.inferer(inputs, engine.network, *args, **kwargs)
Expand Down Expand Up @@ -394,8 +394,8 @@ class EnsembleEvaluator(Evaluator):
default to `True`.
to_kwargs: dict of other args for `prepare_batch` API when converting the input data, except for
`device`, `non_blocking`.
amp_kwargs: dict of the args for `torch.cuda.amp.autocast()` API, for more details:
https://pytorch.org/docs/stable/amp.html#torch.cuda.amp.autocast.
amp_kwargs: dict of the args for `torch.autocast("cuda")` API, for more details:
https://pytorch.org/docs/stable/amp.html#torch.autocast.
"""

Expand Down Expand Up @@ -487,7 +487,7 @@ def _iteration(self, engine: EnsembleEvaluator, batchdata: dict[str, torch.Tenso
for idx, network in enumerate(engine.networks):
with engine.mode(network):
if engine.amp:
with torch.cuda.amp.autocast(**engine.amp_kwargs):
with torch.autocast("cuda", **engine.amp_kwargs):
if isinstance(engine.state.output, dict):
engine.state.output.update(
{engine.pred_keys[idx]: engine.inferer(inputs, network, *args, **kwargs)}
Expand Down
18 changes: 9 additions & 9 deletions monai/engines/trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -125,8 +125,8 @@ class SupervisedTrainer(Trainer):
more details: https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html.
to_kwargs: dict of other args for `prepare_batch` API when converting the input data, except for
`device`, `non_blocking`.
amp_kwargs: dict of the args for `torch.cuda.amp.autocast()` API, for more details:
https://pytorch.org/docs/stable/amp.html#torch.cuda.amp.autocast.
amp_kwargs: dict of the args for `torch.autocast("cuda")` API, for more details:
https://pytorch.org/docs/stable/amp.html#torch.autocast.
compile: whether to use `torch.compile`, default is False. If True, MetaTensor inputs will be converted to
`torch.Tensor` before forward pass, then converted back afterward with copied meta information.
compile_kwargs: dict of the args for `torch.compile()` API, for more details:
Expand Down Expand Up @@ -249,7 +249,7 @@ def _compute_pred_loss():
engine.optimizer.zero_grad(set_to_none=engine.optim_set_to_none)

if engine.amp and engine.scaler is not None:
with torch.cuda.amp.autocast(**engine.amp_kwargs):
with torch.autocast("cuda", **engine.amp_kwargs):
_compute_pred_loss()
engine.scaler.scale(engine.state.output[Keys.LOSS]).backward()
engine.fire_event(IterationEvents.BACKWARD_COMPLETED)
Expand Down Expand Up @@ -335,8 +335,8 @@ class GanTrainer(Trainer):
more details: https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html.
to_kwargs: dict of other args for `prepare_batch` API when converting the input data, except for
`device`, `non_blocking`.
amp_kwargs: dict of the args for `torch.cuda.amp.autocast()` API, for more details:
https://pytorch.org/docs/stable/amp.html#torch.cuda.amp.autocast.
amp_kwargs: dict of the args for `torch.autocast("cuda")` API, for more details:
https://pytorch.org/docs/stable/amp.html#torch.autocast.
"""

Expand Down Expand Up @@ -512,8 +512,8 @@ class AdversarialTrainer(Trainer):
more details: https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html.
to_kwargs: dict of other args for `prepare_batch` API when converting the input data, except for
`device`, `non_blocking`.
amp_kwargs: dict of the args for `torch.cuda.amp.autocast()` API, for more details:
https://pytorch.org/docs/stable/amp.html#torch.cuda.amp.autocast.
amp_kwargs: dict of the args for `torch.autocast("cuda")` API, for more details:
https://pytorch.org/docs/stable/amp.html#torch.autocast.
"""

def __init__(
Expand Down Expand Up @@ -683,7 +683,7 @@ def _compute_generator_loss() -> None:
engine.state.g_optimizer.zero_grad(set_to_none=engine.optim_set_to_none)

if engine.amp and engine.state.g_scaler is not None:
with torch.cuda.amp.autocast(**engine.amp_kwargs):
with torch.autocast("cuda", **engine.amp_kwargs):
_compute_generator_loss()

engine.state.output[Keys.LOSS] = (
Expand Down Expand Up @@ -731,7 +731,7 @@ def _compute_discriminator_loss() -> None:
engine.state.d_network.zero_grad(set_to_none=engine.optim_set_to_none)

if engine.amp and engine.state.d_scaler is not None:
with torch.cuda.amp.autocast(**engine.amp_kwargs):
with torch.autocast("cuda", **engine.amp_kwargs):
_compute_discriminator_loss()

engine.state.d_scaler.scale(engine.state.output[AdversarialKeys.DISCRIMINATOR_LOSS]).backward()
Expand Down
2 changes: 1 addition & 1 deletion monai/engines/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -309,7 +309,7 @@ def __init__(self, scheduler: nn.Module, num_train_timesteps: int, condition_nam
self.scheduler = scheduler

def get_target(self, images, noise, timesteps):
return self.scheduler.get_velocity(images, noise, timesteps)
return self.scheduler.get_velocity(images, noise, timesteps) # type: ignore[operator]


def default_make_latent(
Expand Down
4 changes: 2 additions & 2 deletions monai/engines/workflow.py
Original file line number Diff line number Diff line change
Expand Up @@ -90,8 +90,8 @@ class Workflow(Engine):
default to `True`.
to_kwargs: dict of other args for `prepare_batch` API when converting the input data, except for
`device`, `non_blocking`.
amp_kwargs: dict of the args for `torch.cuda.amp.autocast()` API, for more details:
https://pytorch.org/docs/stable/amp.html#torch.cuda.amp.autocast.
amp_kwargs: dict of the args for `torch.autocast("cuda")` API, for more details:
https://pytorch.org/docs/stable/amp.html#torch.autocast.
Raises:
TypeError: When ``data_loader`` is not a ``torch.utils.data.DataLoader``.
Expand Down
2 changes: 1 addition & 1 deletion monai/fl/client/monai_algo.py
Original file line number Diff line number Diff line change
Expand Up @@ -574,7 +574,7 @@ def get_weights(self, extra=None):
model_path = os.path.join(self.bundle_root, cast(str, self.model_filepaths[model_type]))
if not os.path.isfile(model_path):
raise ValueError(f"No best model checkpoint exists at {model_path}")
weights = torch.load(model_path, map_location="cpu")
weights = torch.load(model_path, map_location="cpu", weights_only=True)
# if weights contain several state dicts, use the one defined by `save_dict_key`
if isinstance(weights, dict) and self.save_dict_key in weights:
weights = weights.get(self.save_dict_key)
Expand Down
2 changes: 1 addition & 1 deletion monai/handlers/checkpoint_loader.py
Original file line number Diff line number Diff line change
Expand Up @@ -122,7 +122,7 @@ def __call__(self, engine: Engine) -> None:
Args:
engine: Ignite Engine, it can be a trainer, validator or evaluator.
"""
checkpoint = torch.load(self.load_path, map_location=self.map_location)
checkpoint = torch.load(self.load_path, map_location=self.map_location, weights_only=False)

k, _ = list(self.load_dict.items())[0]
# single object and checkpoint is directly a state_dict
Expand Down
Loading

0 comments on commit 7c26e5a

Please sign in to comment.