Skip to content

help to do color correction on images based on color checker card classic 24 patch.

Notifications You must be signed in to change notification settings

agfianf/color-correction

Folders and files

NameName
Last commit message
Last commit date
Feb 9, 2025
Feb 3, 2025
Feb 8, 2025
Feb 11, 2025
Feb 11, 2025
Feb 5, 2025
Feb 5, 2025
Feb 6, 2025
Feb 9, 2025
Jan 22, 2025
Feb 9, 2025
Feb 9, 2025
Feb 9, 2025
Feb 11, 2025
Feb 11, 2025
Feb 8, 2025
Feb 11, 2025

Repository files navigation

Color Correction Logo

Color Correction


version downloads python-version Try color-correction using - Google Colab read - docs

Package formerly published as color-correction-asdfghjkl on PyPI. The name has been simplified for better accessibility and professional recognition.

This package is designed to perform color correction on images using the Color Checker Classic 24 Patch card. It provides a robust solution for ensuring accurate color representation in your images.

๐Ÿ“ฆ Installation

pip install color-correction

๐Ÿ‹๏ธโ€โ™€๏ธ How it works

How it works

โšก How to use

from color_correction import ColorCorrection

# Step 1: Define the path to the input image
image_path = "asset/images/cc-19.png"

# Step 2: Load the input image
input_image = cv2.imread(image_path)

# Step 3: Initialize the color correction model with specified parameters
color_corrector = ColorCorrection(
    detection_model="yolov8",
    detection_conf_th=0.25,
    correction_model="polynomial", # "least_squares", "affine_reg", "linear_reg"
    degree=3,  # for polynomial correction model
    use_gpu=True,
)

# Step 4: Extract color patches from the input image
# you can set reference patches from another image (image has color checker card)
# or use the default D50
# color_corrector.set_reference_patches(image=None, debug=True)
color_corrector.set_input_patches(image=input_image, debug=True)
color_corrector.fit()
corrected_image = color_corrector.predict(
    input_image=input_image,
    debug=True,
    debug_output_dir="zzz",
)

# Step 5: Evaluate the color correction results
eval_result = color_corrector.calc_color_diff_patches()
print(eval_result)
Sample Evaluation Output
{
    "initial": {
        "min": 2.254003059526461,
        "max": 13.461066402633447,
        "mean": 8.3072755187654,
        "std": 3.123962754767539,
    },
    "corrected": {
        "min": 0.30910031798755183,
        "max": 5.422311999126372,
        "mean": 1.4965478752947827,
        "std": 1.2915738724958112,
    },
    "delta": {
        "min": 1.9449027415389093,
        "max": 8.038754403507074,
        "mean": 6.810727643470616,
        "std": 1.8323888822717276,
    },
}
Sample Output Debug Image

Sample Output

๐Ÿ”Ž Reporting

import cv2

from color_correction import ColorCorrectionAnalyzer

# input_image_path = "assets/cc-19.png"
input_image_path = "assets/cc-1.jpg"

report = ColorCorrectionAnalyzer(
    list_correction_methods=[
        ("least_squares", {}),
        ("linear_reg", {}),
        ("affine_reg", {}),
        ("polynomial", {"degree": 2}),
        ("polynomial", {"degree": 3}),
        # ("polynomial", {"degree": 4}),
        # ("polynomial", {"degree": 5}),
    ],
    list_detection_methods=[
        ("yolov8", {"detection_conf_th": 0.25}),
    ],
)
report.run(
    input_image=cv2.imread(input_image_path),
    reference_image=None,
    output_dir="report-output",
)
Sample Report Output

Sample Benchmark Output

๐Ÿ“ˆ Benefits

  • Consistency: Ensure uniform color correction across multiple images.
  • Accuracy: Leverage the color correction matrix for precise color adjustments.
  • Flexibility: Adaptable for various image sets with different color profiles.

๐Ÿคธ TODO

  • Add Loggers
  • Add detection MCC:CCheckerDetector from opencv
  • Add Segmentation Color Checker using YOLOv11 ONNX
  • Improve validation preprocessing (e.g., auto-match-orientation CC)
  • Add more analysis and evaluation metrics (Still thinking...)

๐Ÿ“š References