Quantile and CDF Regression Example Quantile regression objective $$ J(\tau) = E\left(\rho(\tau, Y - u(\tau, X)|X\right)$$ CDF regression objective $$ J(y_c) = E\left(\mathbb{1}{Y < y_c} \log v(y_c, X) + (1 - \mathbb{1}{Y < yc}) \log(1 - v(y_x, X)) | X\right)$$ The functions $u$, $v$ must be monotonic in $\tau$ and $y_c$ respectively. Unconditional distribution of $Y$ Quantile regression CDF estimation via logistic regression with monotone network Conditional distributional of $Y|X$ Quantile regression CDF estimation via logistic regression with monotone network TODO Do more quantitative error plots etc.