This repository has been archived by the owner on Jan 15, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 532
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Added ALBERT v2 quantization with INC example (#1591)
* Add quantization to QA scripts * fix * Remove quantize bool field * Fix electra large accuracy * Update mkldnn to onednn * Accuracy fix * Add sphinx to dev requirments * remove print * change quantize_mode to proper one * fix round_to argument * Albert example Co-authored-by: Bartlomiej Gawrych <[email protected]> Co-authored-by: Bartlomiej Gawrych <[email protected]>
- Loading branch information
1 parent
fecd3e1
commit 14553a0
Showing
6 changed files
with
1,103 additions
and
14 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,15 @@ | ||
version: 1.0 | ||
|
||
model: | ||
name: albert_base_v2 | ||
framework: mxnet | ||
|
||
tuning: | ||
strategy: | ||
name: mycustom | ||
accuracy_criterion: | ||
relative: 0.02 | ||
exit_policy: | ||
timeout: 0 | ||
max_trials: 1000 | ||
random_seed: 9527 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,176 @@ | ||
import copy | ||
import numpy as np | ||
from collections import OrderedDict | ||
from neural_compressor.strategy.strategy import TuneStrategy, strategy_registry | ||
|
||
plot_operator_influence = True | ||
|
||
def calc_approx_error(expected_tensor: np.ndarray, observed_tensor: np.ndarray) -> float: | ||
''' | ||
Calculating relative error for one tensor | ||
''' | ||
error = observed_tensor - expected_tensor | ||
absolute_error = np.abs(error) | ||
mean_absolute_error = absolute_error.mean() | ||
mean_expected_value = np.abs(expected_tensor).mean() | ||
error = mean_absolute_error / mean_expected_value | ||
return error | ||
|
||
|
||
def get_approx_errors(expected_tensors, observed_tensors): | ||
''' | ||
Calculating relative error for multiple tensors: Dict[tensors_name: str, tensor: np.ndarray] | ||
''' | ||
errors = {} | ||
for node_name in observed_tensors.keys(): | ||
expected_tensor = expected_tensors[node_name][node_name] | ||
observed_tensor = observed_tensors[node_name][node_name] | ||
errors[node_name] = calc_approx_error(expected_tensor, observed_tensor) | ||
return errors | ||
|
||
|
||
@strategy_registry | ||
class MyCustomTuneStrategy(TuneStrategy): | ||
'''INC Custom strategy definition''' | ||
def __init__(self, model, conf, q_dataloader, q_func=None, | ||
eval_dataloader=None, eval_func=None, dicts=None, q_hooks=None): | ||
super().__init__( | ||
model, | ||
conf, | ||
q_dataloader, | ||
q_func, | ||
eval_dataloader, | ||
eval_func, | ||
dicts, | ||
q_hooks) | ||
|
||
|
||
def get_qtensors(self, quant_cfg, node_list): | ||
''' | ||
Generating quantized model based on configuration and capturing intermediate tensors | ||
''' | ||
qmodel = self.adaptor.quantize(quant_cfg, self.model, self.calib_dataloader) | ||
tensors = self.adaptor.inspect_tensor(qmodel, self.calib_dataloader, node_list, [1]) # 1 is a batch index | ||
return tensors['activation'][0] # we need to specify that we want activation (layer output) because INC stores also weight tensors | ||
# 0 is the first batch | ||
def next_tune_cfg(self): | ||
FALLBACK_DTYPE = 'fp32' | ||
|
||
# creating base configuration - all nodes are quantized and calibrated with minmax algorithm | ||
best_cfg = {} | ||
best_cfg['calib_iteration'] = int(self.calib_iter[0]) # number of batches for calibration | ||
best_cfg['calib_sampling_size'] = int(self.calib_sampling_size[0]) # number of samples for calibration (multiplicity of batch) | ||
nodes_cfg = OrderedDict() | ||
nodes_cfg_idx = {} | ||
for node_key, cfgs in self.opwise_tune_cfgs.items(): | ||
for i, cfg in enumerate(cfgs): | ||
if cfg['activation']['algorithm'] == 'minmax': | ||
nodes_cfg_idx[node_key] = i | ||
break | ||
nodes_cfg[node_key] = cfg | ||
best_cfg['op'] = nodes_cfg | ||
|
||
yield best_cfg | ||
|
||
# If fully quantized model does not meet the requirements, we proceed to exclude some nodes | ||
|
||
# Collecting tensors from the original model - expected tensors | ||
node_list = [op_name for (op_name, op_type) in best_cfg['op'].keys()] | ||
f32_tensors = self.adaptor.inspect_tensor(self.model, self.calib_dataloader, node_list, [1]) | ||
f32_tensors = f32_tensors['activation'][0] | ||
|
||
# Collecting tensors from the fully quantized model | ||
q_tensors = self.get_qtensors(best_cfg, node_list) | ||
approx_errors = get_approx_errors(f32_tensors, q_tensors) | ||
|
||
# best_cfg['op'] is an OrderedDict, which order of elements should correspond to their | ||
# order in the computational graph | ||
for node_key, cfg in best_cfg['op'].items(): | ||
# Node's key in INC is its name + its operator | ||
node_name, node_op = node_key | ||
# Checking what configuration options are available for this particular node | ||
capabilities = self.opwise_tune_space[node_key]['activation']['dtype'] | ||
# If a particular node can be excluded from quanrtization ('fp32' in capabilities) | ||
# and current error is bigger than threshold value, we check what accuracy improvement | ||
# would be achieved by this exclusion | ||
if FALLBACK_DTYPE in capabilities and approx_errors[node_name] > 0.06: | ||
original_dtype = cfg['activation']['dtype'] | ||
cfg['activation']['dtype'] = FALLBACK_DTYPE # Exclude the node from quantization | ||
|
||
# Collecting tensors for a new configuration with the current node excluded | ||
q_tensors = self.get_qtensors(best_cfg, node_list) | ||
# Calculating errors for the new configuration | ||
new_approx_errors = get_approx_errors(f32_tensors, q_tensors) | ||
# Calculating error differences for every node in a model | ||
err_diffs = {} | ||
for tensor_node_name in new_approx_errors.keys(): | ||
diff = approx_errors[tensor_node_name] - new_approx_errors[tensor_node_name] | ||
err_diffs[tensor_node_name] = diff | ||
err_diffs_arr = np.array(list(err_diffs.values())) | ||
|
||
# If the sum of errors on the following layers is greater than the threshold value we | ||
# keep the node excluded | ||
threshold_sum_error_layers = err_diffs_arr.size * 0.01 | ||
if err_diffs_arr.sum() >= threshold_sum_error_layers: | ||
before = approx_errors | ||
after = approx_errors.copy() | ||
after.update(new_approx_errors) | ||
if plot_operator_influence: | ||
import matplotlib.pyplot as plt | ||
plt.figure() | ||
plt.plot(before.values(), marker='o', markersize=2.5, label='Before') | ||
plt.plot(after.values(), marker='o', markersize=2.5, label='After') | ||
plt.ylabel('Relative error') | ||
plt.xlabel('Layer') | ||
plt.legend() | ||
plt.savefig(f'{node_name}_error.png') | ||
|
||
approx_errors.update(new_approx_errors) | ||
nodes_cfg_idx.pop(node_key) # Mark node as not quantizable | ||
else: | ||
cfg['activation']['dtype'] = original_dtype | ||
|
||
yield best_cfg | ||
|
||
# Choosing calibration algorithm (kl or minmax) for every node which was not excluded from quantization | ||
for cfg in self.bayesian_configurations(best_cfg, nodes_cfg_idx): | ||
yield cfg | ||
|
||
def bayesian_params_to_tune_configs(self, params): | ||
''' | ||
Creating configuration from params - changing configurations' indexes for real configurations | ||
''' | ||
node_cfgs = {} | ||
for node_key, configs in self.opwise_quant_cfgs.items(): | ||
if node_key in params: | ||
value = int(params[node_key]) | ||
value = min(value, len(configs) - 1) | ||
node_cfgs[node_key] = copy.deepcopy(configs[value]) | ||
return node_cfgs | ||
|
||
def bayesian_configurations(self, cfg_base, params_base): | ||
from neural_compressor.strategy.bayesian import BayesianOptimization | ||
|
||
# For each node we specify the possible range of values (we treat them as a configurations' index) | ||
pbounds = {} | ||
for node_key, configs in self.opwise_quant_cfgs.items(): | ||
if node_key in params_base and len(configs) > 1: | ||
pbounds[node_key] = (0, len(configs)) | ||
|
||
cfg = copy.deepcopy(cfg_base) | ||
if len(pbounds) == 0: # if there is nothing to be optimized, we finish | ||
cfg['op'].update(self.bayesian_params_to_tune_configs(params_base)) | ||
return | ||
|
||
bayes_opt = BayesianOptimization(pbounds=pbounds, random_seed=self.cfg.tuning.random_seed) | ||
bayes_opt._space.register(params_base, self.last_tune_result[0]) # registering the outcome of current configuration | ||
while True: | ||
# Generating next configuration | ||
params = bayes_opt.gen_next_params() | ||
cfg['op'].update(self.bayesian_params_to_tune_configs(params)) | ||
yield cfg | ||
try: | ||
# Registering the outcome | ||
bayes_opt._space.register(params, self.last_tune_result[0]) | ||
except KeyError: | ||
pass |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.