Skip to content

epfl-dlab/transformers-GCD-PR

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

🤗 Transformers-CFG

Build GitHub Documentation GitHub release Contributor Covenant DOI

Transformers-CFG is a fork of the Hugging Face Transformers library adding support for Context-Free Grammar based Constrained Generation methods. The library is trying to keep up-to-date with the main branch of the 🤗 Transformers library. The library tries to offer a compatible interface to llama-cpp project.

Installation

pip install git+https://github.com/epfl-dlab/transformers-CFG

QuickStart: Force LLM to generate a valid json object

The below example can be found in examples/pytorch/text-geenration/grammar_constrained_generation.py

from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation.grammar_utils import IncrementalGrammarConstraint
from transformers.generation.logits_process import GrammarConstrainedLogitsProcessor


if __name__ == "__main__":

    # Load model and tokenizer
    tokenizer = AutoTokenizer.from_pretrained("gpt2")
    tokenizer.pad_token = tokenizer.eos_token
    model = AutoModelForCausalLM.from_pretrained("gpt2")

    # Load json grammar
    with open("examples/grammars/json.gbnf", "r") as file:
        grammar_str = file.read()
    grammar = IncrementalGrammarConstraint(grammar_str, "root", tokenizer)
    grammar_processor = GrammarConstrainedLogitsProcessor(grammar)


    # Generate
    prefix1 = "This is a valid json string for http request:"
    prefix2 = "This is a valid json string for shopping cart:"
    input_ids = tokenizer([prefix1, prefix2], add_special_tokens=False, return_tensors="pt", padding=True)["input_ids"]

    output = model.generate(
        input_ids,
        do_sample=False,
        max_length=50,
        num_beams=2,
        logits_processor=[grammar_processor],
        repetition_penalty=5.0,
        num_return_sequences=1,
    )
    # decode output
    generations = tokenizer.batch_decode(output, skip_special_tokens=True)
    print(generations)

    """
    'This is a valid json string for http request:{ "request": { "method": "GET", "headers": [], "content": "Content","type": "application" }}
    'This is a valid json string for shopping cart:This is a valid json string for shopping cart:{ "name": "MyCart", "price": 0, "value": 1 }
    """

Grammar Collection

We provide a collection of grammars in the examples/grammars folder, which are mostly identical to the grammars in llama-cpp project. We try to keep the grammars up-to-date with the original grammars from llama-cpp project. But up to now, we can not yet guarantee that all grammars from llama-cpp project can be directly used in transformers-CFG.

The list of grammars contains:

  • json.gbnf: A grammar for generating valid json objects.
  • c.gbnf: A grammar for generating valid C programs.
  • chess.gbnf: A grammar for generating valid chess moves.
  • arithmetic.gbnf: A grammar for generating valid arithmetic expressions.

Why should I use transformers-CFG?

  • We offer the same grammar interface as llama-cpp project, allowing you to drop-in replace llama-cpp with transformers-CFG.
  • We allow you to use any of the models in the 🤗 Transformers library, including the ones that are not supported by llama-cpp.

About

🤗 Transformers with Context-Free Grammar Generation Support

Resources

License

Code of conduct

Security policy

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.5%
  • Cuda 0.4%
  • Shell 0.1%
  • Dockerfile 0.0%
  • C++ 0.0%
  • C 0.0%