-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHackathon Agbi main.py
137 lines (97 loc) · 3.68 KB
/
Hackathon Agbi main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import keras
from keras.preprocessing import image
from glob import glob
import cv2, os
import numpy as np
import matplotlib.pyplot as plt
path = r'C:\Users\Abhijeet\Desktop\Skin dataset\data\train\benign'
path1 = r'C:\Users\Abhijeet\Desktop\Skin dataset\data\train\malignant'
ROW, COL = 96, 96
benigns, malignants = [], []
y_benigns, y_malignants = [], []
def load_benigns():
print('Loading all benign images\n')
benign_path = os.path.join(path, '*g')
for benign_img in glob(benign_path):
benign = cv2.imread(benign_img)
benign = cv2.cvtColor(benign, cv2.COLOR_BGR2GRAY)
benign = cv2.resize(benign, (ROW, COL))
benign = image.img_to_array(benign)
benigns.append(benign)
print('All benign images loaded')
load_benigns()
def load_malignants():
print('Loading all malignant images\n')
malignant_path = os.path.join(path1, '*g')
for malignant_img in glob(malignant_path):
malignant = cv2.imread(malignant_img)
malignant = cv2.cvtColor(malignant, cv2.COLOR_BGR2GRAY)
malignant = cv2.resize(malignant, (ROW, COL))
malignant = image.img_to_array(malignant)
malignants.append(malignant)
print('All malignant images loaded')
load_malignants()
y_benigns = [1 for item in enumerate(benigns)]
y_malignants = [0 for item in enumerate(malignants)]
benigns = np.asarray(benigns).astype('float32')
malignants = np.asarray(malignants).astype('float32')
y_benigns = np.asarray(y_benigns).astype('int32')
y_malignants = np.asarray(y_malignants).astype('int32')
benigns /= 255
malignants /= 255
X = np.concatenate((benigns,malignants), axis=0)
y = np.concatenate((y_benigns, y_malignants), axis=0)
classes = ['benign', 'malignant']
from keras.models import Sequential
from keras.layers.convolutional import Conv2D, MaxPooling2D
from keras.layers.core import Dense, Flatten, Dropout, Activation
from keras.optimizers import Adam
from keras.utils import np_utils
from keras.callbacks import ModelCheckpoint
from keras.models import save_model, load_model
IMG_CHANNEL = 1
BATCH_SIZE = 128
N_EPOCH = 16
VERBOSE = 2
VALIDAION_SPLIT = .2
OPTIM = Adam()
N_CLASSES = len(classes)
y = np_utils.to_categorical(y, N_CLASSES)
plt.xlabel('epochs')
print('One-Hot Encoding done')
model = Sequential([
Conv2D(32, (3,3), padding='same', input_shape=(ROW, COL, IMG_CHANNEL), activation='relu'),
Conv2D(32, (3,3), padding='same', activation='relu'),
MaxPooling2D(pool_size=(2,2)),
Dropout(.25),
Conv2D(64, (3,3), padding='same', activation='relu'),
Conv2D(64, (3,3), padding='same', activation='relu'),
MaxPooling2D(pool_size=(2,2)),
Dropout(.25),
Flatten(),
Dense(512, activation='relu'),
Dropout(.5),
Dense(N_CLASSES, activation='softmax')
])
print('The model was created by following config:')
model.summary()
model.compile(loss='categorical_crossentropy', optimizer=OPTIM, metrics=['accuracy'])
checkpoint = ModelCheckpoint('model_checkpoint/benigns_vs_malignants.h5')
history=model.fit(X, y, batch_size=BATCH_SIZE, epochs=N_EPOCH, validation_split=VALIDAION_SPLIT, verbose=VERBOSE)
model.save("my_modelCNN.h5")
plt.figure(0)
plt.plot(history.history['accuracy'], label='training accuracy')
plt.plot(history.history['val_accuracy'], label='val accuracy')
plt.title('Accuracy')
plt.xlabel('epochs')
plt.ylabel('accuracy')
plt.legend()
plt.show()
plt.figure(1)
plt.plot(history.history['loss'], label='training loss')
plt.plot(history.history['val_loss'], label='val loss')
plt.title('Loss')
plt.ylabel('loss')
plt.legend()
plt.show()
#testing the