Skip to content

Commit

Permalink
mixin: fix errors on autoscaling metrics after series churn (#9412)
Browse files Browse the repository at this point in the history
* WIP

Signed-off-by: Dimitar Dimitrov <[email protected]>

* mixin: fix errors on autoscaling metrics after series churn

The promQL joins would fail when the series churn. For example, when
there are labels added by scrapers or when the K8s exporter restarts
and gets a new `pod` label.

Signed-off-by: Dimitar Dimitrov <[email protected]>

* Add CHANGELOG.md entry

Signed-off-by: Dimitar Dimitrov <[email protected]>

* Also fix alert

Signed-off-by: Dimitar Dimitrov <[email protected]>

* Regenerate helm tests

Signed-off-by: Dimitar Dimitrov <[email protected]>

---------

Signed-off-by: Dimitar Dimitrov <[email protected]>
  • Loading branch information
dimitarvdimitrov authored Sep 26, 2024
1 parent 23e5ba9 commit 8d3c2c6
Show file tree
Hide file tree
Showing 13 changed files with 78 additions and 42 deletions.
2 changes: 2 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -174,6 +174,8 @@
* [BUGFIX] Alerts: do not fire `MimirRingMembersMismatch` during the migration to experimental ingest storage. #8727
* [BUGFIX] Dashboards: avoid over-counting of ingesters metrics when migrating to experimental ingest storage. #9170
* [BUGFIX] Dashboards: fix `job_prefix` not utilized in `jobSelector`. #9155
* [BUGFIX] Dashboards: Fix autoscaling metrics joins when series churn. #9412
* [BUGFIX] Alerts: Fix autoscaling metrics joins in `MimirAutoscalerNotActive` when series churn. #9412

### Jsonnet

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -20357,7 +20357,7 @@ data:
"span": 4,
"targets": [
{
"expr": "sum by(cluster, namespace, scaler, metric, scaledObject) (\n label_replace(\n rate(keda_scaler_errors[$__rate_interval]),\n \"namespace\", \"$1\", \"exported_namespace\", \"(.+)\"\n )\n) +\non(cluster, namespace, metric, scaledObject) group_left\nlabel_replace(\n label_replace(\n kube_horizontalpodautoscaler_spec_target_metric{cluster=~\"$cluster\", namespace=~\"$namespace\", horizontalpodautoscaler=~\"keda-hpa-querier\"} * 0,\n \"scaledObject\", \"$1\", \"horizontalpodautoscaler\", \"keda-hpa-(.*)\"\n ),\n \"metric\", \"$1\", \"metric_name\", \"(.+)\"\n)\n",
"expr": "sum by(cluster, namespace, scaler, metric, scaledObject) (\n label_replace(\n rate(keda_scaler_errors[$__rate_interval]),\n \"namespace\", \"$1\", \"exported_namespace\", \"(.+)\"\n )\n) +\non(cluster, namespace, metric, scaledObject) group_left\nlabel_replace(\n label_replace(\n # Using `max by ()` so that series churn doesn't break the promQL join\n max by (cluster, namespace, metric, horizontalpodautoscaler) (kube_horizontalpodautoscaler_spec_target_metric{cluster=~\"$cluster\", namespace=~\"$namespace\", horizontalpodautoscaler=~\"keda-hpa-querier\"} * 0),\n \"scaledObject\", \"$1\", \"horizontalpodautoscaler\", \"keda-hpa-(.*)\"\n ),\n \"metric\", \"$1\", \"metric_name\", \"(.+)\"\n)\n",
"format": "time_series",
"legendFormat": "{{scaler}} failures",
"legendLink": null
Expand Down Expand Up @@ -26151,7 +26151,7 @@ data:
"span": 6,
"targets": [
{
"expr": "sum by(cluster, namespace, scaler, metric, scaledObject) (\n label_replace(\n rate(keda_scaler_errors[$__rate_interval]),\n \"namespace\", \"$1\", \"exported_namespace\", \"(.+)\"\n )\n) +\non(cluster, namespace, metric, scaledObject) group_left\nlabel_replace(\n label_replace(\n kube_horizontalpodautoscaler_spec_target_metric{cluster=~\"$cluster\", namespace=~\"$namespace\", horizontalpodautoscaler=~\"keda-hpa-ruler-querier\"} * 0,\n \"scaledObject\", \"$1\", \"horizontalpodautoscaler\", \"keda-hpa-(.*)\"\n ),\n \"metric\", \"$1\", \"metric_name\", \"(.+)\"\n)\n",
"expr": "sum by(cluster, namespace, scaler, metric, scaledObject) (\n label_replace(\n rate(keda_scaler_errors[$__rate_interval]),\n \"namespace\", \"$1\", \"exported_namespace\", \"(.+)\"\n )\n) +\non(cluster, namespace, metric, scaledObject) group_left\nlabel_replace(\n label_replace(\n # Using `max by ()` so that series churn doesn't break the promQL join\n max by (cluster, namespace, metric, horizontalpodautoscaler) (kube_horizontalpodautoscaler_spec_target_metric{cluster=~\"$cluster\", namespace=~\"$namespace\", horizontalpodautoscaler=~\"keda-hpa-ruler-querier\"} * 0),\n \"scaledObject\", \"$1\", \"horizontalpodautoscaler\", \"keda-hpa-(.*)\"\n ),\n \"metric\", \"$1\", \"metric_name\", \"(.+)\"\n)\n",
"format": "time_series",
"legendFormat": "{{scaler}} failures",
"legendLink": null
Expand Down Expand Up @@ -26212,7 +26212,7 @@ data:
"span": 4,
"targets": [
{
"expr": "sum by (scaler) (\n label_replace(\n keda_scaler_metrics_value{cluster=~\"$cluster\", exported_namespace=~\"$namespace\", scaler=~\".*cpu.*\"},\n \"namespace\", \"$1\", \"exported_namespace\", \"(.*)\"\n )\n /\n on(cluster, namespace, scaledObject, metric) group_left label_replace(\n label_replace(\n kube_horizontalpodautoscaler_spec_target_metric{cluster=~\"$cluster\", namespace=~\"$namespace\", horizontalpodautoscaler=~\"keda-hpa-ruler-querier\"},\n \"metric\", \"$1\", \"metric_name\", \"(.+)\"\n ),\n \"scaledObject\", \"$1\", \"horizontalpodautoscaler\", \"keda-hpa-(.*)\"\n )\n)\n",
"expr": "sum by (scaler) (\n label_replace(\n # Using `max by ()` so that series churn doesn't break the promQL join\n max by (cluster, namespace, scaledObject, metric, scaler) keda_scaler_metrics_value{cluster=~\"$cluster\", exported_namespace=~\"$namespace\", scaler=~\".*cpu.*\"},\n \"namespace\", \"$1\", \"exported_namespace\", \"(.*)\"\n )\n /\n on(cluster, namespace, scaledObject, metric) group_left label_replace(\n label_replace(\n # Using `max by ()` so that series churn doesn't break the promQL join\n max by (cluster, namespace, scaledObject, metric_name) (kube_horizontalpodautoscaler_spec_target_metric{cluster=~\"$cluster\", namespace=~\"$namespace\", horizontalpodautoscaler=~\"keda-hpa-ruler-querier\"}),\n \"metric\", \"$1\", \"metric_name\", \"(.+)\"\n ),\n \"scaledObject\", \"$1\", \"horizontalpodautoscaler\", \"keda-hpa-(.*)\"\n )\n)\n",
"format": "time_series",
"legendFormat": "{{ scaler }}",
"legendLink": null
Expand Down Expand Up @@ -26261,7 +26261,7 @@ data:
"span": 4,
"targets": [
{
"expr": "sum by (scaler) (\n label_replace(\n keda_scaler_metrics_value{cluster=~\"$cluster\", exported_namespace=~\"$namespace\", scaler=~\".*memory.*\"},\n \"namespace\", \"$1\", \"exported_namespace\", \"(.*)\"\n )\n /\n on(cluster, namespace, scaledObject, metric) group_left label_replace(\n label_replace(\n kube_horizontalpodautoscaler_spec_target_metric{cluster=~\"$cluster\", namespace=~\"$namespace\", horizontalpodautoscaler=~\"keda-hpa-ruler-querier\"},\n \"metric\", \"$1\", \"metric_name\", \"(.+)\"\n ),\n \"scaledObject\", \"$1\", \"horizontalpodautoscaler\", \"keda-hpa-(.*)\"\n )\n)\n",
"expr": "sum by (scaler) (\n label_replace(\n # Using `max by ()` so that series churn doesn't break the promQL join\n max by (cluster, namespace, scaledObject, metric, scaler) keda_scaler_metrics_value{cluster=~\"$cluster\", exported_namespace=~\"$namespace\", scaler=~\".*memory.*\"},\n \"namespace\", \"$1\", \"exported_namespace\", \"(.*)\"\n )\n /\n on(cluster, namespace, scaledObject, metric) group_left label_replace(\n label_replace(\n # Using `max by ()` so that series churn doesn't break the promQL join\n max by (cluster, namespace, scaledObject, metric_name) (kube_horizontalpodautoscaler_spec_target_metric{cluster=~\"$cluster\", namespace=~\"$namespace\", horizontalpodautoscaler=~\"keda-hpa-ruler-querier\"}),\n \"metric\", \"$1\", \"metric_name\", \"(.+)\"\n ),\n \"scaledObject\", \"$1\", \"horizontalpodautoscaler\", \"keda-hpa-(.*)\"\n )\n)\n",
"format": "time_series",
"legendFormat": "{{ scaler }}",
"legendLink": null
Expand Down Expand Up @@ -26310,7 +26310,7 @@ data:
"span": 4,
"targets": [
{
"expr": "sum by (scaler) (\n label_replace(\n keda_scaler_metrics_value{cluster=~\"$cluster\", exported_namespace=~\"$namespace\", scaler=~\".*queries.*\"},\n \"namespace\", \"$1\", \"exported_namespace\", \"(.*)\"\n )\n /\n on(cluster, namespace, scaledObject, metric) group_left label_replace(\n label_replace(\n kube_horizontalpodautoscaler_spec_target_metric{cluster=~\"$cluster\", namespace=~\"$namespace\", horizontalpodautoscaler=~\"keda-hpa-ruler-querier\"},\n \"metric\", \"$1\", \"metric_name\", \"(.+)\"\n ),\n \"scaledObject\", \"$1\", \"horizontalpodautoscaler\", \"keda-hpa-(.*)\"\n )\n)\n",
"expr": "sum by (scaler) (\n label_replace(\n # Using `max by ()` so that series churn doesn't break the promQL join\n max by (cluster, namespace, scaledObject, metric, scaler) keda_scaler_metrics_value{cluster=~\"$cluster\", exported_namespace=~\"$namespace\", scaler=~\".*queries.*\"},\n \"namespace\", \"$1\", \"exported_namespace\", \"(.*)\"\n )\n /\n on(cluster, namespace, scaledObject, metric) group_left label_replace(\n label_replace(\n # Using `max by ()` so that series churn doesn't break the promQL join\n max by (cluster, namespace, scaledObject, metric_name) (kube_horizontalpodautoscaler_spec_target_metric{cluster=~\"$cluster\", namespace=~\"$namespace\", horizontalpodautoscaler=~\"keda-hpa-ruler-querier\"}),\n \"metric\", \"$1\", \"metric_name\", \"(.+)\"\n ),\n \"scaledObject\", \"$1\", \"horizontalpodautoscaler\", \"keda-hpa-(.*)\"\n )\n)\n",
"format": "time_series",
"legendFormat": "{{ scaler }}",
"legendLink": null
Expand Down Expand Up @@ -40428,7 +40428,7 @@ data:
"span": 3,
"targets": [
{
"expr": "sum by (scaler) (\n label_replace(\n keda_scaler_metrics_value{cluster=~\"$cluster\", exported_namespace=~\"$namespace\", scaler=~\".*cpu.*\"},\n \"namespace\", \"$1\", \"exported_namespace\", \"(.*)\"\n )\n /\n on(cluster, namespace, scaledObject, metric) group_left label_replace(\n label_replace(\n kube_horizontalpodautoscaler_spec_target_metric{cluster=~\"$cluster\", namespace=~\"$namespace\", horizontalpodautoscaler=~\"keda-hpa-distributor\"},\n \"metric\", \"$1\", \"metric_name\", \"(.+)\"\n ),\n \"scaledObject\", \"$1\", \"horizontalpodautoscaler\", \"keda-hpa-(.*)\"\n )\n)\n",
"expr": "sum by (scaler) (\n label_replace(\n # Using `max by ()` so that series churn doesn't break the promQL join\n max by (cluster, namespace, scaledObject, metric, scaler) keda_scaler_metrics_value{cluster=~\"$cluster\", exported_namespace=~\"$namespace\", scaler=~\".*cpu.*\"},\n \"namespace\", \"$1\", \"exported_namespace\", \"(.*)\"\n )\n /\n on(cluster, namespace, scaledObject, metric) group_left label_replace(\n label_replace(\n # Using `max by ()` so that series churn doesn't break the promQL join\n max by (cluster, namespace, scaledObject, metric_name) (kube_horizontalpodautoscaler_spec_target_metric{cluster=~\"$cluster\", namespace=~\"$namespace\", horizontalpodautoscaler=~\"keda-hpa-distributor\"}),\n \"metric\", \"$1\", \"metric_name\", \"(.+)\"\n ),\n \"scaledObject\", \"$1\", \"horizontalpodautoscaler\", \"keda-hpa-(.*)\"\n )\n)\n",
"format": "time_series",
"legendFormat": "{{ scaler }}",
"legendLink": null
Expand Down Expand Up @@ -40477,7 +40477,7 @@ data:
"span": 3,
"targets": [
{
"expr": "sum by (scaler) (\n label_replace(\n keda_scaler_metrics_value{cluster=~\"$cluster\", exported_namespace=~\"$namespace\", scaler=~\".*memory.*\"},\n \"namespace\", \"$1\", \"exported_namespace\", \"(.*)\"\n )\n /\n on(cluster, namespace, scaledObject, metric) group_left label_replace(\n label_replace(\n kube_horizontalpodautoscaler_spec_target_metric{cluster=~\"$cluster\", namespace=~\"$namespace\", horizontalpodautoscaler=~\"keda-hpa-distributor\"},\n \"metric\", \"$1\", \"metric_name\", \"(.+)\"\n ),\n \"scaledObject\", \"$1\", \"horizontalpodautoscaler\", \"keda-hpa-(.*)\"\n )\n)\n",
"expr": "sum by (scaler) (\n label_replace(\n # Using `max by ()` so that series churn doesn't break the promQL join\n max by (cluster, namespace, scaledObject, metric, scaler) keda_scaler_metrics_value{cluster=~\"$cluster\", exported_namespace=~\"$namespace\", scaler=~\".*memory.*\"},\n \"namespace\", \"$1\", \"exported_namespace\", \"(.*)\"\n )\n /\n on(cluster, namespace, scaledObject, metric) group_left label_replace(\n label_replace(\n # Using `max by ()` so that series churn doesn't break the promQL join\n max by (cluster, namespace, scaledObject, metric_name) (kube_horizontalpodautoscaler_spec_target_metric{cluster=~\"$cluster\", namespace=~\"$namespace\", horizontalpodautoscaler=~\"keda-hpa-distributor\"}),\n \"metric\", \"$1\", \"metric_name\", \"(.+)\"\n ),\n \"scaledObject\", \"$1\", \"horizontalpodautoscaler\", \"keda-hpa-(.*)\"\n )\n)\n",
"format": "time_series",
"legendFormat": "{{ scaler }}",
"legendLink": null
Expand Down Expand Up @@ -40526,7 +40526,7 @@ data:
"span": 3,
"targets": [
{
"expr": "sum by(cluster, namespace, scaler, metric, scaledObject) (\n label_replace(\n rate(keda_scaler_errors[$__rate_interval]),\n \"namespace\", \"$1\", \"exported_namespace\", \"(.+)\"\n )\n) +\non(cluster, namespace, metric, scaledObject) group_left\nlabel_replace(\n label_replace(\n kube_horizontalpodautoscaler_spec_target_metric{cluster=~\"$cluster\", namespace=~\"$namespace\", horizontalpodautoscaler=~\"keda-hpa-distributor\"} * 0,\n \"scaledObject\", \"$1\", \"horizontalpodautoscaler\", \"keda-hpa-(.*)\"\n ),\n \"metric\", \"$1\", \"metric_name\", \"(.+)\"\n)\n",
"expr": "sum by(cluster, namespace, scaler, metric, scaledObject) (\n label_replace(\n rate(keda_scaler_errors[$__rate_interval]),\n \"namespace\", \"$1\", \"exported_namespace\", \"(.+)\"\n )\n) +\non(cluster, namespace, metric, scaledObject) group_left\nlabel_replace(\n label_replace(\n # Using `max by ()` so that series churn doesn't break the promQL join\n max by (cluster, namespace, metric, horizontalpodautoscaler) (kube_horizontalpodautoscaler_spec_target_metric{cluster=~\"$cluster\", namespace=~\"$namespace\", horizontalpodautoscaler=~\"keda-hpa-distributor\"} * 0),\n \"scaledObject\", \"$1\", \"horizontalpodautoscaler\", \"keda-hpa-(.*)\"\n ),\n \"metric\", \"$1\", \"metric_name\", \"(.+)\"\n)\n",
"format": "time_series",
"legendFormat": "{{scaler}} failures",
"legendLink": null
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -990,16 +990,23 @@ spec:
# Match only Mimir namespaces.
* on(cluster, namespace) group_left max by(cluster, namespace) (cortex_build_info)
# Add "metric" label.
+ on(cluster, namespace, horizontalpodautoscaler) group_right label_replace(kube_horizontalpodautoscaler_spec_target_metric*0, "metric", "$1", "metric_name", "(.+)")
+ on(cluster, namespace, horizontalpodautoscaler) group_right
# Using `max by ()` so that series churn doesn't break the promQL join
max by (cluster, namespace, horizontalpodautoscaler) (
label_replace(kube_horizontalpodautoscaler_spec_target_metric*0, "metric", "$1", "metric_name", "(.+)")
)
> 0),
"scaledObject", "$1", "horizontalpodautoscaler", "keda-hpa-(.*)"
)
)
# Alert only if the scaling metric exists and is > 0. If the KEDA ScaledObject is configured to scale down 0,
# then HPA ScalingActive may be false when expected to run 0 replicas. In this case, the scaling metric exported
# by KEDA could not exist at all or being exposed with a value of 0.
and on (cluster, namespace, metric, scaledObject)
(label_replace(keda_scaler_metrics_value, "namespace", "$0", "exported_namespace", ".+") > 0)
and on (cluster, namespace, metric, scaledObject) (
max by (cluster, namespace, metric, scaledObject) (
label_replace(keda_scaler_metrics_value, "namespace", "$0", "exported_namespace", ".+") > 0
)
)
for: 1h
labels:
severity: critical
Expand Down
13 changes: 10 additions & 3 deletions operations/mimir-mixin-compiled-baremetal/alerts.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -964,16 +964,23 @@ groups:
# Match only Mimir namespaces.
* on(cluster, namespace) group_left max by(cluster, namespace) (cortex_build_info)
# Add "metric" label.
+ on(cluster, namespace, horizontalpodautoscaler) group_right label_replace(kube_horizontalpodautoscaler_spec_target_metric*0, "metric", "$1", "metric_name", "(.+)")
+ on(cluster, namespace, horizontalpodautoscaler) group_right
# Using `max by ()` so that series churn doesn't break the promQL join
max by (cluster, namespace, horizontalpodautoscaler) (
label_replace(kube_horizontalpodautoscaler_spec_target_metric*0, "metric", "$1", "metric_name", "(.+)")
)
> 0),
"scaledObject", "$1", "horizontalpodautoscaler", "keda-hpa-(.*)"
)
)
# Alert only if the scaling metric exists and is > 0. If the KEDA ScaledObject is configured to scale down 0,
# then HPA ScalingActive may be false when expected to run 0 replicas. In this case, the scaling metric exported
# by KEDA could not exist at all or being exposed with a value of 0.
and on (cluster, namespace, metric, scaledObject)
(label_replace(keda_scaler_metrics_value, "namespace", "$0", "exported_namespace", ".+") > 0)
and on (cluster, namespace, metric, scaledObject) (
max by (cluster, namespace, metric, scaledObject) (
label_replace(keda_scaler_metrics_value, "namespace", "$0", "exported_namespace", ".+") > 0
)
)
for: 1h
labels:
severity: critical
Expand Down

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

Loading

0 comments on commit 8d3c2c6

Please sign in to comment.