Skip to content

gregtatum/pytorch-learnings

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

32 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Pytorch Learning

This repo contains my learnings for pytorch.

Examples

The bare minimum hello world for pytorch.

poetry run src/pytorch-hello.py

Train a simple feed forward neural network for fashionMNIST.

poetry run src/fashion-mnist.py

Transformers

Discovering the Transformer paper

Formula Description
$Q$ The Query
$K$ The Key
$V$ The Value
$\text{Attention}(Q, K, V) = \text{softmax}({\Large QK^T \over \sqrt{d_k}})V$ The self attention function, known as scaled dot-product attention
$x^{(i)}$ An embedded input
$W_q, W_k, W_v$ Weight queries, used to train the attention.
$T$ The number of embedded input vectors
$d$ The length of a single word embedding vector
$q_i = W_qx \text{ for } i \in [1, T]$
$k_i = W_kx \text{ for } i \in [1, T]$
$v_i = W_vx \text{ for } i \in [1, T]$
$q^{(i)}$ and $k^{(i)}$ Vectors of dimension $d_k$

$$ \mathbf{QK}^T =

\begin{bmatrix}

e_{11} & e_{12} & \dots & e_{1n} \

e_{21} & e_{22} & \dots & e_{2n} \

\vdots & \vdots & \ddots & \vdots \

e_{m1} & e_{m2} & \dots & e_{mn} \

\end{bmatrix} $$

$$ \frac{\mathbf{QK}^T}{\sqrt{d_k}} =

\begin{bmatrix}

\tfrac{e_{11}}{\sqrt{d_k}} & \tfrac{e_{12}}{\sqrt{d_k}} & \dots & \tfrac{e_{1n}}{\sqrt{d_k}} \

\tfrac{e_{21}}{\sqrt{d_k}} & \tfrac{e_{22}}{\sqrt{d_k}} & \dots & \tfrac{e_{2n}}{\sqrt{d_k}} \

\vdots & \vdots & \ddots & \vdots \

\tfrac{e_{m1}}{\sqrt{d_k}} & \tfrac{e_{m2}}{\sqrt{d_k}} & \dots & \tfrac{e_{mn}}{\sqrt{d_k}} \

\end{bmatrix} $$

$$ \text{softmax} \left( \frac{\mathbf{QK}^T}{\sqrt{d_k}} \right) =

\begin{bmatrix}

\text{softmax} ( \tfrac{e_{11}}{\sqrt{d_k}} & \tfrac{e_{12}}{\sqrt{d_k}} & \dots & \tfrac{e_{1n}}{\sqrt{d_k}} ) \

\text{softmax} ( \tfrac{e_{21}}{\sqrt{d_k}} & \tfrac{e_{22}}{\sqrt{d_k}} & \dots & \tfrac{e_{2n}}{\sqrt{d_k}} ) \

\vdots & \vdots & \ddots & \vdots \

\text{softmax} ( \tfrac{e_{m1}}{\sqrt{d_k}} & \tfrac{e_{m2}}{\sqrt{d_k}} & \dots & \tfrac{e_{mn}}{\sqrt{d_k}} ) \

\end{bmatrix} $$

$$

$$

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published